Results 1 
5 of
5
Realization of Constructive Set Theory into Explicit Mathematics: a lower bound for impredicative Mahlo universe
 Transactions American Math. Soc
, 2000
"... We define a realizability interpretation of Aczel's Constructive Set Theory CZF into Explicit Mathematics. The final results are that CZF extended by Mahlo principles is realizable in corresponding extensions of T0 , thus providing relative lower bounds for the prooftheoretic strength of the latter ..."
Abstract

Cited by 4 (2 self)
 Add to MetaCart
We define a realizability interpretation of Aczel's Constructive Set Theory CZF into Explicit Mathematics. The final results are that CZF extended by Mahlo principles is realizable in corresponding extensions of T0 , thus providing relative lower bounds for the prooftheoretic strength of the latter. Introduction Several di#erent frameworks have been founded in the 70es aiming to give a foundation for constructive mathematics. The most welldeveloped of them nowadays are MartinLof type theory, Aczel's constructive set theory, and Feferman's explicit mathematics. While constructive set theory was built to have an immediate type interpretation, no theory stronger than # 1 2 CA, which prooftheoretically is still far below the basic system T 0 of Explicit Mathematics, have been shown up to now to be directly embeddable into explicit systems. It also yielded that the only method for establishing lower bounds for T 0 and its extensions remained to be wellordering proofs. This omissi...
Autonomous Fixed Point Progressions and Fixed Point Transfinite Recursion
 In Logic Colloquium ’98
"... . This paper is a contribution to the area of metapredicative proof theory. It continues recent investigations on the transfinitely iterated fixed point theories # ID# (cf. [10]) and addresses the question of autonomity in iterated fixed point theories. An external and an internal form of autonom ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
. This paper is a contribution to the area of metapredicative proof theory. It continues recent investigations on the transfinitely iterated fixed point theories # ID# (cf. [10]) and addresses the question of autonomity in iterated fixed point theories. An external and an internal form of autonomous generation of transfinite hierarchies of fixed points of positive arithmetic operators are introduced and prooftheoretically analyzed. This includes the discussion of the principle of socalled fixed point transfinite recursion. Connections to theories for iterated inaccessibility in the context of Kripke Platek set theory without foundation are revealed. 1 Introduction The foundational program to study the principles and ordinals which are implicit in a predicative conception of the universe of sets of natural numbers led to the progression of systems of ramified analysis up to the famous FefermanSchutte ordinal # 0 in the early sixties. Since then numerous theories have been found w...
Metapredicative And Explicit Mahlo: A ProofTheoretic Perspective
"... After briefly discussing the concepts of predicativity, metapredicativity and impredicativity, we turn to the notion of Mahloness as it is treated in various contexts. Afterwards the ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
After briefly discussing the concepts of predicativity, metapredicativity and impredicativity, we turn to the notion of Mahloness as it is treated in various contexts. Afterwards the
PseudoHierarchies in Admissible Set Theory without Foundation and Explicit Mathematics
"... Acknowledgements............................... 8 I Languages, theories and provable ordinals 9 I.1 General conventions............................ 9 ..."
Abstract
 Add to MetaCart
Acknowledgements............................... 8 I Languages, theories and provable ordinals 9 I.1 General conventions............................ 9
PREDICATIVITY BEYOND Γ0
, 2005
"... Abstract. We reevaluate the claim that predicative reasoning (given the natural numbers) is limited by the FefermanSchütte ordinal Γ0. First we comprehensively criticize the arguments that have been offered in support of this position. Then we analyze predicativism from first principles and develop ..."
Abstract
 Add to MetaCart
Abstract. We reevaluate the claim that predicative reasoning (given the natural numbers) is limited by the FefermanSchütte ordinal Γ0. First we comprehensively criticize the arguments that have been offered in support of this position. Then we analyze predicativism from first principles and develop a general method for accessing ordinals which is predicatively valid according to this analysis. We find that the Veblen ordinal φΩω(0), and larger ordinals, are predicatively provable. The precise delineation of the extent of predicative reasoning is possibly one of the most remarkable modern results in the foundations of mathematics. Building on