Results 1 
7 of
7
What's so special about Kruskal's Theorem AND THE ORDINAL Γ0? A SURVEY OF SOME RESULTS IN PROOF THEORY
 ANNALS OF PURE AND APPLIED LOGIC, 53 (1991), 199260
, 1991
"... This paper consists primarily of a survey of results of Harvey Friedman about some proof theoretic aspects of various forms of Kruskal’s tree theorem, and in particular the connection with the ordinal Γ0. We also include a fairly extensive treatment of normal functions on the countable ordinals, an ..."
Abstract

Cited by 43 (3 self)
 Add to MetaCart
This paper consists primarily of a survey of results of Harvey Friedman about some proof theoretic aspects of various forms of Kruskal’s tree theorem, and in particular the connection with the ordinal Γ0. We also include a fairly extensive treatment of normal functions on the countable ordinals, and we give a glimpse of Veblen hierarchies, some subsystems of secondorder logic, slowgrowing and fastgrowing hierarchies including Girard’s result, and Goodstein sequences. The central theme of this paper is a powerful theorem due to Kruskal, the “tree theorem”, as well as a “finite miniaturization ” of Kruskal’s theorem due to Harvey Friedman. These versions of Kruskal’s theorem are remarkable from a prooftheoretic point of view because they are not provable in relatively strong logical systems. They are examples of socalled “natural independence phenomena”, which are considered by most logicians as more natural than the metamathematical incompleteness results first discovered by Gödel. Kruskal’s tree theorem also plays a fundamental role in computer science, because it is one of the main tools for showing that certain orderings on trees are well founded. These orderings play a crucial role in proving the termination of systems of rewrite rules and the correctness of KnuthBendix completion procedures. There is also a close connection between a certain infinite countable ordinal called Γ0 and Kruskal’s theorem. Previous definitions of the function involved in this connection are known to be incorrect, in that, the function is not monotonic. We offer a repaired definition of this function, and explore briefly the consequences of its existence.
Algorithms for ordinal arithmetic
 In 19th International Conference on Automated Deduction (CADE
, 2003
"... Abstract. Proofs of termination are essential for establishing the correct behavior of computing systems. There are various ways of establishing termination, but the most general involves the use of ordinals. An example of a theorem proving system in which ordinals are used to prove termination is A ..."
Abstract

Cited by 11 (5 self)
 Add to MetaCart
Abstract. Proofs of termination are essential for establishing the correct behavior of computing systems. There are various ways of establishing termination, but the most general involves the use of ordinals. An example of a theorem proving system in which ordinals are used to prove termination is ACL2. In ACL2, every function defined must be shown to terminate using the ordinals up to ɛ0. We use a compact notation for the ordinals up to ɛ0 (exponentially more succinct than the one used by ACL2) and define efficient algorithms for ordinal addition, subtraction, multiplication, and exponentiation. In this paper we describe our notation and algorithms, prove their correctness, and analyze their complexity. 1
Ordinal arithmetic in ACL2
 In ACL2 Workshop 2003
, 2003
"... Abstract. Ordinals form the basis for termination proofs in ACL2. Currently, ACL2 uses a rather inefficient representation for the ordinals up to ɛ0 and provides limited support for reasoning about them. We present algorithms for ordinal arithmetic on an exponentially more compact representation tha ..."
Abstract

Cited by 9 (6 self)
 Add to MetaCart
Abstract. Ordinals form the basis for termination proofs in ACL2. Currently, ACL2 uses a rather inefficient representation for the ordinals up to ɛ0 and provides limited support for reasoning about them. We present algorithms for ordinal arithmetic on an exponentially more compact representation than the one used by ACL2. The algorithms have been implemented and numerous properties of the arithmetic operators have been mechanically verified, thereby greatly extending ACL2’s ability to reason about the ordinals. We describe how to use the libraries containing these results, which are currently distributed with ACL2 version 2.7. 1
Ordinal arithmetic: Algorithms and mechanization
 Journal of Automated Reasoning
, 2006
"... Abstract. Termination proofs are of critical importance for establishing the correct behavior of both transformational and reactive computing systems. A general setting for establishing termination proofs involves the use of the ordinal numbers, an extension of the natural numbers into the transfini ..."
Abstract

Cited by 5 (3 self)
 Add to MetaCart
Abstract. Termination proofs are of critical importance for establishing the correct behavior of both transformational and reactive computing systems. A general setting for establishing termination proofs involves the use of the ordinal numbers, an extension of the natural numbers into the transfinite which were introduced by Cantor in the nineteenth century and are at the core of modern set theory. We present the first comprehensive treatment of ordinal arithmetic on compact ordinal notations and give efficient algorithms for various operations, including addition, subtraction, multiplication, and exponentiation. Using the ACL2 theorem proving system, we implemented our ordinal arithmetic algorithms, mechanically verified their correctness, and developed a library of theorems that can be used to significantly automate reasoning involving the ordinals. To enable users of the ACL2 system to fully utilize our work required that we modify ACL2, e.g., we replaced the underlying representation of the ordinals and added a large library of definitions and theorems. Our modifications are available starting with ACL2 version 2.8. 1.
PREDICATIVITY BEYOND Γ0
, 2005
"... Abstract. We reevaluate the claim that predicative reasoning (given the natural numbers) is limited by the FefermanSchütte ordinal Γ0. First we comprehensively criticize the arguments that have been offered in support of this position. Then we analyze predicativism from first principles and develop ..."
Abstract
 Add to MetaCart
Abstract. We reevaluate the claim that predicative reasoning (given the natural numbers) is limited by the FefermanSchütte ordinal Γ0. First we comprehensively criticize the arguments that have been offered in support of this position. Then we analyze predicativism from first principles and develop a general method for accessing ordinals which is predicatively valid according to this analysis. We find that the Veblen ordinal φΩω(0), and larger ordinals, are predicatively provable. The precise delineation of the extent of predicative reasoning is possibly one of the most remarkable modern results in the foundations of mathematics. Building on
An overview of the ordinal calculator
"... An ordinal calculator has been developed as an aid for understanding the countable ordinal hierarchy and as a research tool that may eventually help to expand it. A GPL licensed version is available in C++. It is an interactive command line calculator and can be used as a library. It includes notati ..."
Abstract
 Add to MetaCart
An ordinal calculator has been developed as an aid for understanding the countable ordinal hierarchy and as a research tool that may eventually help to expand it. A GPL licensed version is available in C++. It is an interactive command line calculator and can be used as a library. It includes notations for the ordinals uniquely expressible in Cantor normal form, the Veblen hierarchies and a form of ordinal projection or collapsing using notations for countable admissible ordinals and their limits. The calculator does addition, multiplication and exponentiation on ordinal notations. For a recursive limit ordinal notation, α, it can list an initial segment of an infinite sequence of notations such that the union of the ordinals represented by the sequence is the ordinal represented by α. It can give the relative size of any two notations and it determines a unique notation for every ordinal represented. Input is in plain text. Output can be plain text and/or L ATEX math mode format. This approach is motivated by a philosophy of mathematical truth that sees objectively true mathematics as connected to properties of recursive processes. It suggests that computers are an essential adjunct to human intuition for extending the combinatorially complex parts of objective mathematics.