Results 1 
8 of
8
An application of boolean complexity to separation problems in bounded arithmetic
 Proc. London Math. Society
, 1994
"... We develop a method for establishing the independence of some Zf(a)formulas from S'2(a). In particular, we show that T'2(a) is not VZ*(a)conservative over S'2(a). We characterize the Z^definable functions of T2 as being precisely the functions definable as projections of polynomial local search ( ..."
Abstract

Cited by 54 (15 self)
 Add to MetaCart
We develop a method for establishing the independence of some Zf(a)formulas from S'2(a). In particular, we show that T'2(a) is not VZ*(a)conservative over S'2(a). We characterize the Z^definable functions of T2 as being precisely the functions definable as projections of polynomial local search (PLS) problems. Although it is still an open problem whether bounded arithmetic S2 is finitely axiomatizable, considerable progress on this question has been made: S2 +1 is V2f+1conservative over T'2 [3], but it is not V2!f+2conservative unless £f+2 = Ylf+2 [10], and in addition, T2 is not VZf+1conservative over S'2 unless LogSpace s? = Af+1 [8]. In particular, S2 is not finitely axiomatizable provided that the polynomialtime hierarchy does not collapse [10]. For the theory S2(a) these results imply (with some additional arguments) absolute results: S'2 + (a) is V2f+,(a)conservative but not VZf+2(a)conservative over T'2(a), and T'2(a) is not VZf+i(c*)conservative over S'2(a). Here a represents a new uninterpreted predicate symbol adjoined to the language of arithmetic which may be used in induction formulas; from a computer science perspective, a represents an oracle. In this paper we pursue this line of investigation further by showing that T'2(a) is also not V2f(a)conservative over S'2(a). This was known for / = 1, 2 by [9,17] (see also [2]), and our present proof uses a version of the pigeonhole principle similar to the arguments in [2,9]. Perhaps more importantly, we formulate a general method (Theorem 2.6) which can be used to show the unprovability of other 2f(a)formulas from S'2(a). Our methods are analogous in spirit to the proof strategy of [8]: prove a witnessing theorem to show that provability of a Zf+1(a)formula A in S'2(a) implies that it is witnessed by a function of certain complexity and then employ techniques of boolean complexity to construct an oracle a such that the formula A cannot be witnessed by a function of the prescribed complexity. Our formula A shall be 2f(a) and thus we can use the original witnessing theorem of [2]. The boolean complexity used is the same as in [8], namely Hastad's switching lemmas [6].
Witnessing Functions in Bounded Arithmetic and Search Problems
, 1994
"... We investigate the possibility to characterize (multi)functions that are \Sigma b i definable with small i (i = 1; 2; 3) in fragments of bounded arithmetic T2 in terms of natural search problems defined over polynomialtime structures. We obtain the following results: 1. A reformulation of known ..."
Abstract

Cited by 35 (4 self)
 Add to MetaCart
We investigate the possibility to characterize (multi)functions that are \Sigma b i definable with small i (i = 1; 2; 3) in fragments of bounded arithmetic T2 in terms of natural search problems defined over polynomialtime structures. We obtain the following results: 1. A reformulation of known characterizations of (multi)functions that are \Sigma b 1  and \Sigma b 2 definable in the theories S 1 2 and T 1 2 . 2. New characterizations of (multi)functions that are \Sigma b 2  and \Sigma b 3  definable in the theory T 2 2 . 3. A new nonconservation result: the theory T 2 2 (ff) is not 8\Sigma b 1 (ff) conservative over the theory S 2 2 (ff). To prove that the theory T 2 2 (ff) is not 8\Sigma b 1 (ff)conservative over the theory S 2 2 (ff), we present two examples of a \Sigma b 1 (ff)principle separating the two theories: (a) the weak pigeonhole principle WPHP (a 2 ; f; g) formalizing that no function f is a bijection between a 2 and a with the inverse...
Relating the Bounded Arithmetic and Polynomial Time Hierarchies
 Annals of Pure and Applied Logic
, 1994
"... The bounded arithmetic theory S 2 is finitely axiomatized if and only if the polynomial hierarchy provably collapses. If T 2 equals S then T 2 is equal to S 2 and proves that the polynomial time hierarchy collapses to # , and, in fact, to the Boolean hierarchy over # and to # i+1 / ..."
Abstract

Cited by 27 (1 self)
 Add to MetaCart
The bounded arithmetic theory S 2 is finitely axiomatized if and only if the polynomial hierarchy provably collapses. If T 2 equals S then T 2 is equal to S 2 and proves that the polynomial time hierarchy collapses to # , and, in fact, to the Boolean hierarchy over # and to # i+1 /poly .
On the b 1 bitcomprehension rule
 Logic Colloquium 98
, 2000
"... Summary. The theory � b 1CR of Bounded Arithmetic axiomatized by the � b 1bitcomprehension rule is defined and shown to be strongly related to the complexity class TC 0. The � b 1definable functions of � b 1CR are those in uniform TC 0, and the � b 2definable functions are computable by counte ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
Summary. The theory � b 1CR of Bounded Arithmetic axiomatized by the � b 1bitcomprehension rule is defined and shown to be strongly related to the complexity class TC 0. The � b 1definable functions of � b 1CR are those in uniform TC 0, and the � b 2definable functions are computable by counterexample computations using TC 0functions. The latter is used to show that a collapse of stronger theories to � b 1CR implies that NP is contained in nonuniform TC 0. 1
The Witness Function Method and Provably Recursive Functions of Peano
 Logic, Methodology and Philosophy of Science IX
, 1994
"... This paper presents a new proof of the characterization of the provably recursive functions of the fragments I# n of Peano arithmetic. The proof method also characterizes the # k definable functions of I# n and of theories axiomatized by transfinite induction on ordinals. The proofs are complete ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
This paper presents a new proof of the characterization of the provably recursive functions of the fragments I# n of Peano arithmetic. The proof method also characterizes the # k definable functions of I# n and of theories axiomatized by transfinite induction on ordinals. The proofs are completely prooftheoretic and use the method of witness functions and witness oracles.
On the $\Delta^b_1$BitComprehension Rule
, 2000
"... Introduction The \Delta b 1 bitcomprehension rule roughly states the following: Given n and a predicate A(x) that has been proven to be \Delta b 1 , i.e., equivalent to both an NP  (\Sigma b 1 ) and a coNP  (\Pi b 1 ) predicate, there is a number w of length n such that for every i ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Introduction The \Delta b 1 bitcomprehension rule roughly states the following: Given n and a predicate A(x) that has been proven to be \Delta b 1 , i.e., equivalent to both an NP  (\Sigma b 1 ) and a coNP  (\Pi b 1 ) predicate, there is a number w of length n such that for every i ! n, the ith bit of w is set if and only if A(i) holds. One can think of w as coding the set of small i such that A(i) holds. We consider the theory of Bounded Arithmetic \Delta b 1 CR that has this rule as its main axiom. This theory is re
Consistency and Gamesin Search of New Combinatorial Principles
, 2004
"... We show that a semantical interpretation of Herbrand's disjunctions can be used to obtain 2 independent sentences whose nature is more combinatorial than the nature of the usual consistency statements. Then we apply this method to Bounded Arithmetic and present 8 1 combinatorial sentences tha ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
We show that a semantical interpretation of Herbrand's disjunctions can be used to obtain 2 independent sentences whose nature is more combinatorial than the nature of the usual consistency statements. Then we apply this method to Bounded Arithmetic and present 8 1 combinatorial sentences that characterize all 8 1 sentences provable in S 2 . We use the concept of a two player game to describe these sentences.