Results 1  10
of
32
Relations in Concurrency
"... The theme of this paper is profunctors, and their centrality and ubiquity in understanding concurrent computation. Profunctors (a.k.a. distributors, or bimodules) are a generalisation of relations to categories. Here they are first presented and motivated via spans of event structures, and the seman ..."
Abstract

Cited by 263 (33 self)
 Add to MetaCart
The theme of this paper is profunctors, and their centrality and ubiquity in understanding concurrent computation. Profunctors (a.k.a. distributors, or bimodules) are a generalisation of relations to categories. Here they are first presented and motivated via spans of event structures, and the semantics of nondeterministic dataflow. Profunctors are shown to play a key role in relating models for concurrency and to support an interpretation as higherorder processes (where input and output may be processes). Two recent directions of research are described. One is concerned with a language and computational interpretation for profunctors. This addresses the duality between input and output in profunctors. The other is to investigate general spans of event structures (the spans can be viewed as special profunctors) to give causal semantics to higherorder processes. For this it is useful to generalise event structures to allow events which “persist.”
Geometry and Concurrency: A User's Guide
, 2000
"... Introduction "Geometry and Concurrency" is not yet a wellestablished domain of research, but is rather made of a collection of seemingly related techniques, algorithms and formalizations, coming from different application areas, accumulated over a long period of time. There is currently a certain ..."
Abstract

Cited by 29 (7 self)
 Add to MetaCart
Introduction "Geometry and Concurrency" is not yet a wellestablished domain of research, but is rather made of a collection of seemingly related techniques, algorithms and formalizations, coming from different application areas, accumulated over a long period of time. There is currently a certain amount of effort made for unifying these (in particular see the article (Gunawardena, 1994)), following the workshop "New Connections between Computer Science and Mathematics" held at the Newton Institute in Cambridge, England in November 1995 (and sponsored by HP/BRIMS). More recently, the first workshop on the very same subject has been held in Aalborg, Denmark (see http://www.math.auc.dk/~raussen/admin/workshop/workshop.html where the articles of this issue, among others, have been first sketched. But what is "Geometry and Concurrency" composed of then? It is an area of research made of techniques which use geometrical reasoning for describing and solving problems
An Abstract Standardisation Theorem
, 1992
"... The standardisation theorem is a key theorem in the calculus. It implies that any normal form can be reached by the normal order (leftmost outermost) strategy. The theorem states that any reduction may be rearranged in a topdown and lefttoright order. This also holds in orthogonal term rewriting ..."
Abstract

Cited by 28 (5 self)
 Add to MetaCart
The standardisation theorem is a key theorem in the calculus. It implies that any normal form can be reached by the normal order (leftmost outermost) strategy. The theorem states that any reduction may be rearranged in a topdown and lefttoright order. This also holds in orthogonal term rewriting systems (TRS), although the lefttoright order is more subtle. We give a new presentation of the standardisation property by means of four axioms about the residual and nesting relations on redexes. This axiomatic approach provides a better understanding of standardisation, and makes it applicable in other settings, such as dags or interaction networks. We also treat conflicts between redexes (critical pairs in TRS). The axioms include Berry's stability, proving it to be a intrinsic notion of deterministic calculi. 1 Introduction The calculus has two main syntactic theorems. One is the ChurchRosser theorem, which induces uniqueness of normal forms. The second one is the standardisation...
Relationships between Models of Concurrency
, 1994
"... . Models for concurrency can be classified with respect to three relevant parameters: behaviour/system, interleaving/noninterleaving, linear/branching time. When modelling a process, a choice concerning such parameters corresponds to choosing the level of abstraction of the resulting semantics. The ..."
Abstract

Cited by 25 (4 self)
 Add to MetaCart
. Models for concurrency can be classified with respect to three relevant parameters: behaviour/system, interleaving/noninterleaving, linear/branching time. When modelling a process, a choice concerning such parameters corresponds to choosing the level of abstraction of the resulting semantics. The classifications are formalized through the medium of category theory. Keywords. Semantics, Concurrency, Models for Concurrency, Categories. Contents 1 Preliminaries 431 2 Deterministic Transition Systems 433 3 Noninterleaving vs. Interleaving Models 436 Synchronization Trees and Labelled Event Structures : : : : : : : : : : : : : : 438 Transition Systems with Independence : : : : : : : : : : : : : : : : : : : : : : 439 4 Behavioural, Linear Time, Noninterleaving Models 441 Semilanguages and Event Structures : : : : : : : : : : : : : : : : : : : : : : : 443 Trace Languages and Event Structures : : : : : : : : : : : : : : : : : : : : : : 446 5 Transition Systems with Independence and Lab...
Computations, residuals and the power of indeterminacy
 In Timo Lepisto and Arto Salomaa, editors, Proceedings of the Fifteenth ICALP
, 1988
"... We investigate the power of Katmstyle datattow networks, with processes that may exhibit indeterminate behavior. Our main result is a theorem about networks of "monotone " processes, which shows: (1) that the input/output relation of such a network is a total and monotone relation; and (2) every re ..."
Abstract

Cited by 20 (10 self)
 Add to MetaCart
We investigate the power of Katmstyle datattow networks, with processes that may exhibit indeterminate behavior. Our main result is a theorem about networks of "monotone " processes, which shows: (1) that the input/output relation of such a network is a total and monotone relation; and (2) every relation that is total, monotone, and continuous in a certain sense, is the input/output relation of such a network. Now, the class of monotone networks includes networks that compute arbitrary continuous inpu*~/output functions, an "angelic merge " network, and an "ilffinityfair merge " network that exhibits countably indeterminate branching. Since the "fair merge " relation is neither monotone nor continuous, a corollary of our main result is the impossibility of implementing fair merge in terms of continuous functions, angelic merge, and infinityfair merge. Our results are established by applying the powerftll technique of "residuals " to the computations of a network. Residuals, which have previously been used to investigate optimal reduction strategies for the Acalculus, have recently been demonstrated by one of the authors (Stark) "also to be of use in reasoning about concurrent systems. Here, we define the general notion of a "residual operation " on an automaton, and show how residual operations defined on the components of a network induce a certain preorder E on the set of computations of the network. For networks of "monotone port automata, " we show that the "fair " computations coincide with Xmaximal computations. Our results follow from this extremely convenient property. 1
Compositional Relational Semantics for Indeterminate Dataflow Networks
, 1989
"... Given suitable categories T; C and functor F : T ! C, if X; Y are objects of T, then we define an (X; Y )relation in C to be a triple (R; r; ¯ r), where R is an object of C and r : R ! FX and ¯ r : R ! FY are morphisms of C. We define an algebra of relations in C, including operations of "relabeli ..."
Abstract

Cited by 17 (6 self)
 Add to MetaCart
Given suitable categories T; C and functor F : T ! C, if X; Y are objects of T, then we define an (X; Y )relation in C to be a triple (R; r; ¯ r), where R is an object of C and r : R ! FX and ¯ r : R ! FY are morphisms of C. We define an algebra of relations in C, including operations of "relabeling," "sequential composition," "parallel composition," and "feedback," which correspond intuitively to ways in which processes can be composed into networks. Each of these operations is defined in terms of composition and limits in C, and we observe that any operations defined in this way are preserved under the mapping from relations in C to relations in C 0 induced by a continuous functor G : C ! C 0 . To apply the theory, we define a category Auto of concurrent automata, and we give an operational semantics of dataflowlike networks of processes with indeterminate behaviors, in which a network is modeled as a relation in Auto. We then define a category EvDom of "event domains," a (non...
Relative Normalization in Deterministic Residual Structures
 In: Proc. of the 19 th International Colloquium on Trees in Algebra and Programming, CAAP'96, Springer LNCS
, 1996
"... . This paper generalizes the Huet and L'evy theory of normalization by neededness to an abstract setting. We define Stable Deterministic Residual Structures (SDRS) and Deterministic Family Structures (DFS) by axiomatizing some properties of the residual relation and the family relation on redexes in ..."
Abstract

Cited by 17 (13 self)
 Add to MetaCart
. This paper generalizes the Huet and L'evy theory of normalization by neededness to an abstract setting. We define Stable Deterministic Residual Structures (SDRS) and Deterministic Family Structures (DFS) by axiomatizing some properties of the residual relation and the family relation on redexes in an Abstract Rewriting System. We present two proofs of the Relative Normalization Theorem, one for SDRSs for regular stable sets, and another for DFSs for all stable sets of desirable `normal forms'. We further prove the Relative Optimality Theorem for DFSs. We extend this result to deterministic Computation Structures which are deterministic Event Structures with an extra relation expressing selfessentiality. 1 Introduction A normalizable term, in a rewriting system, may have an infinite reduction, so it is important to have a normalizing strategy which enables one to construct reductions to normal form. It is well known that the leftmostoutermost strategy is normalizing in the calc...
The expressive power of indeterminate dataflow primitives
 Information and Computation
, 1992
"... We analyze the relative expressive power of variants of the indeterminate fair merge operator in the context of static dataflow. We establish that there are three different, provably inequivalent, forms of unbounded indeterminacy. In particular, we show that the wellknown fair merge primitive canno ..."
Abstract

Cited by 17 (7 self)
 Add to MetaCart
We analyze the relative expressive power of variants of the indeterminate fair merge operator in the context of static dataflow. We establish that there are three different, provably inequivalent, forms of unbounded indeterminacy. In particular, we show that the wellknown fair merge primitive cannot be expressed with just unbounded indeterminacy. Our proofs are based on a simple trace semantics and on identifying properties of the behaviors of networks that are invariant under network composition. The properties we consider in this paper are all generalizations of monotonicity. 1
Models for Concurrency: Towards a Classification
 Theoretical Computer Science
, 1996
"... Models for concurrency can be classified with respect to three relevant parameters: behaviour/system, interleaving/noninterleaving, linear/branching time. When modelling a process, a choice concerning such parameters corresponds to choosing the level of abstraction of the resulting semantics. In thi ..."
Abstract

Cited by 15 (0 self)
 Add to MetaCart
Models for concurrency can be classified with respect to three relevant parameters: behaviour/system, interleaving/noninterleaving, linear/branching time. When modelling a process, a choice concerning such parameters corresponds to choosing the level of abstraction of the resulting semantics. In this paper, we move a step towards a classification of models for concurrency based on the parameters above. Formally, we choose a representative of any of the eight classes of models obtained by varying the three parameters, and we study the formal relationships between using the language of category theory.
On Relating Rewriting Systems and Graph Grammars to Event Structures
 GRAPH TRANSFORMATIONS IN COMPUTER SCIENCE. LECTURE NOTES IN COMPUTER SCIENCE 776
, 1994
"... In this paper, we investigate how rewriting systems and especially graph grammars as operational models of parallel and distributed systems can be related to event structures as more abstract models. First, distributed rewriting systems that are based on the notion of contexts are introduced as a ..."
Abstract

Cited by 13 (0 self)
 Add to MetaCart
In this paper, we investigate how rewriting systems and especially graph grammars as operational models of parallel and distributed systems can be related to event structures as more abstract models. First, distributed rewriting systems that are based on the notion of contexts are introduced as a common framework for different kinds of rewriting systems and their parallelism properties are investigated. Then we introduce concrete graph grammars and show how they can be integrated into this framework for rewriting systems. A construction for the Mazurkiewicz trace language related to the derivation sequences of a distributed rewriting system is presented. Since there is a wellknown relation between trace languages and event structures, this provides the link between (graph) rewriting and event structures.