Results 1  10
of
40
Relational Queries Computable in Polynomial Time
 Information and Control
, 1986
"... We characterize the polynomial time computable queries as those expressible in relational calculus plus a least fixed point operator and a total ordering on the universe. We also show that even without the ordering one application of fixed point suffices to express any query expressible with several ..."
Abstract

Cited by 269 (17 self)
 Add to MetaCart
We characterize the polynomial time computable queries as those expressible in relational calculus plus a least fixed point operator and a total ordering on the universe. We also show that even without the ordering one application of fixed point suffices to express any query expressible with several alternations of fixed point and negation. This proves that the fixed point query hierarchy suggested by Chandra and Harel collapses at the first fixed point level. It is also a general result showing that in finite model theory one application of fixed point suffices. Introduction and Summary Query languages for relational databases have received considerable attention. In 1972 Codd showed that two natural languages for queries  one algebraic and the other a version of first order predicate calculus  have identical powers of expressibility, [Cod72]. Query languages which are as expressive as Codd's Relational Calculus are sometimes called complete. This term is misleading however becau...
Easy Problems for TreeDecomposable Graphs
, 1991
"... this paper are (i) a construction by which, for a given bounded treewidth, a general MS graph property P is transformed to an MS binary tree property r(P), and a general labeled graph G with a suitable treedecomposition is transformed to a labeled binary tree T(G) in time linear in the number of v ..."
Abstract

Cited by 230 (6 self)
 Add to MetaCart
this paper are (i) a construction by which, for a given bounded treewidth, a general MS graph property P is transformed to an MS binary tree property r(P), and a general labeled graph G with a suitable treedecomposition is transformed to a labeled binary tree T(G) in time linear in the number of vertices of G and in such a way that P holds for G if and only if r(P) holds for T(G). This allows us, using techniques developed by Doner [20] and Thatcher and Wright [42], to compile a tree automaton which decides the MSproblem r(P) on the tree T(G) (and thus also P on the graph G) in linear time, and (ii) a procedure whereby such an automaton for a MS formula with free variables is modified to solve a related EMS problem involving counting
Languages That Capture Complexity Classes
 SIAM Journal of Computing
, 1987
"... this paper a series of languages adequate for expressing exactly those properties checkable in a series of computational complexity classes. For example, we show that a property of graphs (respectively groups, binary strings, etc.) is in polynomial time if and only if it is expressible in the first ..."
Abstract

Cited by 230 (21 self)
 Add to MetaCart
this paper a series of languages adequate for expressing exactly those properties checkable in a series of computational complexity classes. For example, we show that a property of graphs (respectively groups, binary strings, etc.) is in polynomial time if and only if it is expressible in the first order language of graphs (respectively groups, binary strings, etc.) together with a least fixed point operator. As another example, a property is in logspace if and only if it is expressible in first order logic together with a deterministic transitive closure operator. The roots of our approach to complexity theory go back to 1974 when Fagin showed that the NP properties are exactly those expressible in second order existential sentences. It follows that second order logic expresses exactly those properties which are in the polynomial time hierarchy. We show that adding suitable transitive closure operators to second order logic results in languages capturing polynomial space and exponential time, respectively. The existence of such natural languages for each important complexity class sheds a new light on complexity theory. These languages reaffirm the importance of the complexity classes as much more than machine dependent issues. Furthermore a whole new approach is suggested. Upper bounds (algorithms) can be produced by expressing the property of interest in one of our languages. Lower bounds may be demonstrated by showing that such expression is impossible.
Logic and the Challenge of Computer Science
, 1988
"... Nowadays computer science is surpassing mathematics as the primary field of logic applications, but logic is not tuned properly to the new role. In particular, classical logic is preoccupied mostly with infinite static structures whereas many objects of interest in computer science are dynamic objec ..."
Abstract

Cited by 153 (16 self)
 Add to MetaCart
Nowadays computer science is surpassing mathematics as the primary field of logic applications, but logic is not tuned properly to the new role. In particular, classical logic is preoccupied mostly with infinite static structures whereas many objects of interest in computer science are dynamic objects with bounded resources. This chapter consists of two independent parts. The first part is devoted to finite model theory; it is mostly a survey of logics tailored for computational complexity. The second part is devoted to dynamic structures with bounded resources. In particular, we use dynamic structures with bounded resources to model Pascal.
The Expression Of Graph Properties And Graph Transformations In Monadic SecondOrder Logic
, 1997
"... By considering graphs as logical structures, one... ..."
Abstract

Cited by 147 (39 self)
 Add to MetaCart
By considering graphs as logical structures, one...
On Uniformity within NC¹
 JOURNAL OF COMPUTER AND SYSTEM SCIENCES
, 1990
"... In order to study circuit complexity classes within NC¹ in a uniform setting, we need a uniformity condition which is more restrictive than those in common use. Two such conditions, stricter than NC¹ uniformity [Ru81,Co85], have appeared in recent research: Immerman's families of circuits defined by ..."
Abstract

Cited by 127 (19 self)
 Add to MetaCart
In order to study circuit complexity classes within NC¹ in a uniform setting, we need a uniformity condition which is more restrictive than those in common use. Two such conditions, stricter than NC¹ uniformity [Ru81,Co85], have appeared in recent research: Immerman's families of circuits defined by firstorder formulas [Im87a,Im87b] and a uniformity corresponding to Buss' deterministic logtime reductions [Bu87]. We show that these two notions are equivalent, leading to a natural notion of uniformity for lowlevel circuit complexity classes. We show that recent results on the structure of NC¹ [Ba89] still hold true in this very uniform setting. Finally, we investigate a parallel notion of uniformity, still more restrictive, based on the regular languages. Here we give characterizations of subclasses of the regular languages based on their logical expressibility, extending recent work of Straubing, Th'erien, and Thomas [STT88]. A preliminary version of this work appeared as [BIS88].
Toward Logic Tailored for Computational Complexity
 COMPUTATION AND PROOF THEORY
, 1984
"... Whereas firstorder logic was developed to confront the infinite it is often used in computer science in such a way that infinite models are meaningless. We discuss the firstorder theory of finite structures and alternatives to firstorder logic, especially polynomial time logic. ..."
Abstract

Cited by 75 (6 self)
 Add to MetaCart
Whereas firstorder logic was developed to confront the infinite it is often used in computer science in such a way that infinite models are meaningless. We discuss the firstorder theory of finite structures and alternatives to firstorder logic, especially polynomial time logic.
Computing With FirstOrder Logic
, 1995
"... We study two important extensions of firstorder logic (FO) with iteration, the fixpoint and while queries. The main result of the paper concerns the open problem of the relationship between fixpoint and while: they are the same iff ptime = pspace. These and other expressibility results are obtaine ..."
Abstract

Cited by 53 (13 self)
 Add to MetaCart
We study two important extensions of firstorder logic (FO) with iteration, the fixpoint and while queries. The main result of the paper concerns the open problem of the relationship between fixpoint and while: they are the same iff ptime = pspace. These and other expressibility results are obtained using a powerful normal form for while which shows that each while computation over an unordered domain can be reduced to a while computation over an ordered domain via a fixpoint query. The fixpoint query computes an equivalence relation on tuples which is a congruence with respect to the rest of the computation. The same technique is used to show that equivalence of tuples and structures with respect to FO formulas with bounded number of variables is definable in fixpoint. Generalizing fixpoint and while, we consider more powerful languages which model arbitrary computation interacting with a database using a finite set of FO queries. Such computation is modeled by a relational machine...
Descriptive and Computational Complexity
 COMPUTATIONAL COMPLEXITY THEORY, PROC. SYMP. APPLIED MATH
, 1989
"... Computational complexity began with the natural physical notions of time and space. Given a property, S, an important issue is the computational complexity of checking whether or not an input satisfies S. For a long time, the notion of complexity referred to the time or space used in the computatio ..."
Abstract

Cited by 47 (0 self)
 Add to MetaCart
Computational complexity began with the natural physical notions of time and space. Given a property, S, an important issue is the computational complexity of checking whether or not an input satisfies S. For a long time, the notion of complexity referred to the time or space used in the computation. A mathematician might ask, "What is the complexity of expressing the property S?" It should not be surprising that these two questions  that of checking and that of expressing  are related. However it is startling how closely tied they are when the second question refers to expressing the property in firstorder logic. Many complexity classes originally defined in terms of time or space resources have precise definitions as classes in firstorder logic. In 1974 Fagin gave a characterization of nondeterministic polynomial time (NP) as the set of properties expressible in secondorder existential logic
The Structure of the Models of Decidable Monadic Theories of Graphs
, 1991
"... In this article the structure of the models of decidable (weak) monadic theories of planar graphs is investigated. It is shown that if the (weak) monadic theory of a class K of planar graphs is decidable, then the treewidth in the sense of Robertson and Seymour (1984) of the elements of K is univer ..."
Abstract

Cited by 47 (2 self)
 Add to MetaCart
In this article the structure of the models of decidable (weak) monadic theories of planar graphs is investigated. It is shown that if the (weak) monadic theory of a class K of planar graphs is decidable, then the treewidth in the sense of Robertson and Seymour (1984) of the elements of K is universally bounded and there is a class T of trees such that the (weak) monadic theory of K is interpretable in the (weak) monadic theory of T.