Results 1  10
of
282
Random Oracles are Practical: A Paradigm for Designing Efficient Protocols
, 1995
"... We argue that the random oracle model  where all parties have access to a public random oracle  provides a bridge between cryptographic theory and cryptographic practice. In the paradigm we suggest, a practical protocol P is produced by first devising and proving correct a protocol P R for the ..."
Abstract

Cited by 1333 (62 self)
 Add to MetaCart
We argue that the random oracle model  where all parties have access to a public random oracle  provides a bridge between cryptographic theory and cryptographic practice. In the paradigm we suggest, a practical protocol P is produced by first devising and proving correct a protocol P R for the random oracle model, and then replacing oracle accesses by the computation of an "appropriately chosen" function h. This paradigm yields protocols much more efficient than standard ones while retaining many of the advantages of provable security. We illustrate these gains for problems including encryption, signatures, and zeroknowledge proofs.
NonMalleable Cryptography
 SIAM Journal on Computing
, 2000
"... The notion of nonmalleable cryptography, an extension of semantically secure cryptography, is defined. Informally, in the context of encryption the additional requirement is that given the ciphertext it is impossible to generate a different ciphertext so that the respective plaintexts are related. ..."
Abstract

Cited by 447 (22 self)
 Add to MetaCart
The notion of nonmalleable cryptography, an extension of semantically secure cryptography, is defined. Informally, in the context of encryption the additional requirement is that given the ciphertext it is impossible to generate a different ciphertext so that the respective plaintexts are related. The same concept makes sense in the contexts of string commitment and zeroknowledge proofs of possession of knowledge. Nonmalleable schemes for each of these three problems are presented. The schemes do not assume a trusted center; a user need not know anything about the number or identity of other system users. Our cryptosystem is the first proven to be secure against a strong type of chosen ciphertext attack proposed by Rackoff and Simon, in which the attacker knows the ciphertext she wishes to break and can query the decryption oracle on any ciphertext other than the target.
A Concrete Security Treatment of Symmetric Encryption
 Proceedings of the 38th Symposium on Foundations of Computer Science, IEEE
, 1997
"... We study notions and schemes for symmetric (ie. private key) encryption in a concrete security framework. We give four di erent notions of security against chosen plaintext attack and analyze the concrete complexity ofreductions among them, providing both upper and lower bounds, and obtaining tight ..."
Abstract

Cited by 351 (57 self)
 Add to MetaCart
We study notions and schemes for symmetric (ie. private key) encryption in a concrete security framework. We give four di erent notions of security against chosen plaintext attack and analyze the concrete complexity ofreductions among them, providing both upper and lower bounds, and obtaining tight relations. In this way we classify notions (even though polynomially reducible to each other) as stronger or weaker in terms of concrete security. Next we provide concrete security analyses of methods to encrypt using a block cipher, including the most popular encryption method, CBC. We establish tight bounds (meaning
Publickey Cryptosystems Provably Secure against Chosen Ciphertext Attacks
 In Proc. of the 22nd STOC
, 1995
"... We show how to construct a publickey cryptosystem (as originally defined by Diffie and Hellman) secure against chosen ciphertext attacks, given a publickey cryptosystem secure against passive eavesdropping and a noninteractive zeroknowledge proof system in the shared string model. No such secure ..."
Abstract

Cited by 249 (15 self)
 Add to MetaCart
We show how to construct a publickey cryptosystem (as originally defined by Diffie and Hellman) secure against chosen ciphertext attacks, given a publickey cryptosystem secure against passive eavesdropping and a noninteractive zeroknowledge proof system in the shared string model. No such secure cryptosystems were known before. Key words. cryptography, randomized algorithms AMS subject classifications. 68M10, 68Q20, 68Q22, 68R05, 68R10 A preliminary version of this paper appeared in the Proc. of the Twenty Second ACM Symposium of Theory of Computing. y Incumbent of the Morris and Rose Goldman Career Development Chair, Dept. of Applied Mathematics and Computer Science, Weizmann Institute of Science, Rehovot 76100, Israel. Work performed while at the IBM Almaden Research Center. Research supported by an Alon Fellowship and a grant from the Israel Science Foundation administered by the Israeli Academy of Sciences. Email: naor@wisdom.weizmann.ac.il. z IBM Research Division, T.J ...
Improved Decoding of ReedSolomon and AlgebraicGeometry Codes
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1999
"... Given an errorcorrecting code over strings of length n and an arbitrary input string also of length n, the list decoding problem is that of finding all codewords within a specified Hamming distance from the input string. We present an improved list decoding algorithm for decoding ReedSolomon codes ..."
Abstract

Cited by 245 (40 self)
 Add to MetaCart
Given an errorcorrecting code over strings of length n and an arbitrary input string also of length n, the list decoding problem is that of finding all codewords within a specified Hamming distance from the input string. We present an improved list decoding algorithm for decoding ReedSolomon codes. The list decoding problem for ReedSolomon codes reduces to the following "curvefitting" problem over a field F : Given n points f(x i :y i )g i=1 , x i
Lower Bounds for Discrete Logarithms and Related Problems
, 1997
"... . This paper considers the computational complexity of the discrete logarithm and related problems in the context of "generic algorithms"that is, algorithms which do not exploit any special properties of the encodings of group elements, other than the property that each group element is encoded a ..."
Abstract

Cited by 220 (11 self)
 Add to MetaCart
. This paper considers the computational complexity of the discrete logarithm and related problems in the context of "generic algorithms"that is, algorithms which do not exploit any special properties of the encodings of group elements, other than the property that each group element is encoded as a unique binary string. Lower bounds on the complexity of these problems are proved that match the known upper bounds: any generic algorithm must perform\Omega (p 1=2 ) group operations, where p is the largest prime dividing the order of the group. Also, a new method for correcting a faulty DiffieHellman oracle is presented. 1 Introduction The discrete logarithm problem plays an important role in cryptography. The problem is this: given a generator g of a cyclic group G, and an element g x in G, determine x. A related problem is the DiffieHellman problem: given g x and g y , determine g xy . In this paper, we study the computational power of "generic algorithms" that is, ...
Optimal Asymmetric Encryption – How to Encrypt with RSA
, 1995
"... Given an arbitrary kbit to kbit trapdoor permutation f and a hash function, we exhibit an encryption scheme for which (i) any string x of length slightly less than k bits can be encrypted as f(rx), where rx is a simple probabilistic encoding of x depending on the hash function; and (ii) the scheme ..."
Abstract

Cited by 204 (18 self)
 Add to MetaCart
Given an arbitrary kbit to kbit trapdoor permutation f and a hash function, we exhibit an encryption scheme for which (i) any string x of length slightly less than k bits can be encrypted as f(rx), where rx is a simple probabilistic encoding of x depending on the hash function; and (ii) the scheme can be proven semantically secure assuming the hash function is \ideal. " Moreover, a slightly enhanced scheme is shown to have the property that the adversary can create ciphertexts only of strings for which she \knows " the corresponding plaintextssuch ascheme is not only semantically secure but also nonmalleable and secure against chosenciphertext attack.
Revealing information while preserving privacy
 In PODS
, 2003
"... We examine the tradeoff between privacy and usability of statistical databases. We model a statistical database by an nbit string d1,.., dn, with a query being a subset q ⊆ [n] to be answered by � i∈q di. Our main result is a polynomial reconstruction algorithm of data from noisy (perturbed) subset ..."
Abstract

Cited by 199 (10 self)
 Add to MetaCart
We examine the tradeoff between privacy and usability of statistical databases. We model a statistical database by an nbit string d1,.., dn, with a query being a subset q ⊆ [n] to be answered by � i∈q di. Our main result is a polynomial reconstruction algorithm of data from noisy (perturbed) subset sums. Applying this reconstruction algorithm to statistical databases we show that in order to achieve privacy one has to add perturbation of magnitude Ω ( √ n). That is, smaller perturbation always results in a strong violation of privacy. We show that this result is tight by exemplifying access algorithms for statistical databases that preserve privacy while adding perturbation of magnitude Õ(√n). For timeT bounded adversaries we demonstrate a privacypreserving access algorithm whose perturbation magnitude is ≈ √ T. 1
Design and Analysis of Practical PublicKey Encryption Schemes Secure against Adaptive Chosen Ciphertext Attack
 SIAM Journal on Computing
, 2001
"... A new public key encryption scheme, along with several variants, is proposed and analyzed. The scheme and its variants are quite practical, and are proved secure against adaptive chosen ciphertext attack under standard intractability assumptions. These appear to be the first publickey encryption sc ..."
Abstract

Cited by 189 (11 self)
 Add to MetaCart
A new public key encryption scheme, along with several variants, is proposed and analyzed. The scheme and its variants are quite practical, and are proved secure against adaptive chosen ciphertext attack under standard intractability assumptions. These appear to be the first publickey encryption schemes in the literature that are simultaneously practical and provably secure.
Efficient Search for Approximate Nearest Neighbor in High Dimensional Spaces
, 1998
"... We address the problem of designing data structures that allow efficient search for approximate nearest neighbors. More specifically, given a database consisting of a set of vectors in some high dimensional Euclidean space, we want to construct a spaceefficient data structure that would allow us to ..."
Abstract

Cited by 188 (9 self)
 Add to MetaCart
We address the problem of designing data structures that allow efficient search for approximate nearest neighbors. More specifically, given a database consisting of a set of vectors in some high dimensional Euclidean space, we want to construct a spaceefficient data structure that would allow us to search, given a query vector, for the closest or nearly closest vector in the database. We also address this problem when distances are measured by the L 1 norm, and in the Hamming cube. Significantly improving and extending recent results of Kleinberg, we construct data structures whose size is polynomial in the size of the database, and search algorithms that run in time nearly linear or nearly quadratic in the dimension (depending on the case; the extra factors are polylogarithmic in the size of the database). Computer Science Department, Technion  IIT, Haifa 32000, Israel. Email: eyalk@cs.technion.ac.il y Bell Communications Research, MCC1C365B, 445 South Street, Morristown, NJ ...