Results 1  10
of
82
Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming
 Journal of the ACM
, 1995
"... We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution ..."
Abstract

Cited by 958 (14 self)
 Add to MetaCart
We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution to a nonlinear programming relaxation. This relaxation can be interpreted both as a semidefinite program and as an eigenvalue minimization problem. The best previously known approximation algorithms for these problems had performance guarantees of ...
Proof verification and hardness of approximation problems
 In Proc. 33rd Ann. IEEE Symp. on Found. of Comp. Sci
, 1992
"... We show that every language in NP has a probablistic verifier that checks membership proofs for it using logarithmic number of random bits and by examining a constant number of bits in the proof. If a string is in the language, then there exists a proof such that the verifier accepts with probabilit ..."
Abstract

Cited by 718 (45 self)
 Add to MetaCart
We show that every language in NP has a probablistic verifier that checks membership proofs for it using logarithmic number of random bits and by examining a constant number of bits in the proof. If a string is in the language, then there exists a proof such that the verifier accepts with probability 1 (i.e., for every choice of its random string). For strings not in the language, the verifier rejects every provided “proof " with probability at least 1/2. Our result builds upon and improves a recent result of Arora and Safra [6] whose verifiers examine a nonconstant number of bits in the proof (though this number is a very slowly growing function of the input length). As a consequence we prove that no MAX SNPhard problem has a polynomial time approximation scheme, unless NP=P. The class MAX SNP was defined by Papadimitriou and Yannakakis [82] and hard problems for this class include vertex cover, maximum satisfiability, maximum cut, metric TSP, Steiner trees and shortest superstring. We also improve upon the clique hardness results of Feige, Goldwasser, Lovász, Safra and Szegedy [42], and Arora and Safra [6] and shows that there exists a positive ɛ such that approximating the maximum clique size in an Nvertex graph to within a factor of N ɛ is NPhard. 1
Probabilistic checking of proofs: a new characterization of NP
 Journal of the ACM
, 1998
"... Abstract. We give a new characterization of NP: the class NP contains exactly those languages L for which membership proofs (a proof that an input x is in L) can be verified probabilistically in polynomial time using logarithmic number of random bits and by reading sublogarithmic number of bits from ..."
Abstract

Cited by 365 (28 self)
 Add to MetaCart
Abstract. We give a new characterization of NP: the class NP contains exactly those languages L for which membership proofs (a proof that an input x is in L) can be verified probabilistically in polynomial time using logarithmic number of random bits and by reading sublogarithmic number of bits from the proof. We discuss implications of this characterization; specifically, we show that approximating Clique and Independent Set, even in a very weak sense, is NPhard.
A Parallel Repetition Theorem
 SIAM Journal on Computing
, 1998
"... We show that a parallel repetition of any twoprover oneround proof system (MIP(2, 1)) decreases the probability of error at an exponential rate. No constructive bound was previously known. The constant in the exponent (in our analysis) depends only on the original probability of error and on the t ..."
Abstract

Cited by 324 (11 self)
 Add to MetaCart
We show that a parallel repetition of any twoprover oneround proof system (MIP(2, 1)) decreases the probability of error at an exponential rate. No constructive bound was previously known. The constant in the exponent (in our analysis) depends only on the original probability of error and on the total number of possible answers of the two provers. The dependency on the total number of possible answers is logarithmic, which was recently proved to be almost the best possible [U. Feige and O. Verbitsky, Proc. 11th Annual IEEE Conference on Computational Complexity, IEEE Computer Society Press, Los Alamitos, CA, 1996, pp. 7076].
Robust Characterizations of Polynomials with Applications to Program Testing
, 1996
"... The study of selftesting and selfcorrecting programs leads to the search for robust characterizations of functions. Here we make this notion precise and show such a characterization for polynomials. From this characterization, we get the following applications. ..."
Abstract

Cited by 323 (37 self)
 Add to MetaCart
The study of selftesting and selfcorrecting programs leads to the search for robust characterizations of functions. Here we make this notion precise and show such a characterization for polynomials. From this characterization, we get the following applications.
A SubConstant ErrorProbability LowDegree Test, and a SubConstant ErrorProbability PCP Characterization of NP
 IN PROC. 29TH ACM SYMP. ON THEORY OF COMPUTING, 475484. EL PASO
, 1997
"... We introduce a new lowdegreetest, one that uses the restriction of lowdegree polynomials to planes (i.e., affine subspaces of dimension 2), rather than the restriction to lines (i.e., affine subspaces of dimension 1). We prove the new test to be of a very small errorprobability (in particular, ..."
Abstract

Cited by 281 (22 self)
 Add to MetaCart
We introduce a new lowdegreetest, one that uses the restriction of lowdegree polynomials to planes (i.e., affine subspaces of dimension 2), rather than the restriction to lines (i.e., affine subspaces of dimension 1). We prove the new test to be of a very small errorprobability (in particular, much smaller than constant). The new test enables us to prove a lowerror characterization of NP in terms of PCP. Specifically, our theorem states that, for any given ffl ? 0, membership in any NP language can be verified with O(1) accesses, each reading logarithmic number of bits, and such that the errorprobability is 2 \Gamma log 1\Gammaffl n . Our results are in fact stronger, as stated below. One application of the new characterization of NP is that approximating SETCOVER to within a logarithmic factors is NPhard. Previous analysis for lowdegreetests, as well as previous characterizations of NP in terms of PCP, have managed to achieve, with constant number of accesses, error...
The computational structure of monotone monadic SNP and constraint satisfaction: A study through Datalog and group theory
 SIAM J. Comput
, 1998
"... ..."
The Hardness of Approximate Optima in Lattices, Codes, and Systems of Linear Equations
, 1993
"... We prove the following about the Nearest Lattice Vector Problem (in any `p norm), the Nearest Codeword Problem for binary codes, the problem of learning a halfspace in the presence of errors, and some other problems. 1. Approximating the optimum within any constant factor is NPhard. 2. If for some ..."
Abstract

Cited by 159 (7 self)
 Add to MetaCart
We prove the following about the Nearest Lattice Vector Problem (in any `p norm), the Nearest Codeword Problem for binary codes, the problem of learning a halfspace in the presence of errors, and some other problems. 1. Approximating the optimum within any constant factor is NPhard. 2. If for some ffl ? 0 there exists a polynomialtime algorithm that approximates the optimum within a factor of 2 log 0:5\Gammaffl n , then every NP language can be decided in quasipolynomial deterministic time, i.e., NP ` DTIME(n poly(log n) ). Moreover, we show that result 2 also holds for the Shortest Lattice Vector Problem in the `1 norm. Also, for some of these problems we can prove the same result as above, but for a larger factor such as 2 log 1\Gammaffl n or n ffl . Improving the factor 2 log 0:5\Gammaffl n to p dimension for either of the lattice problems would imply the hardness of the Shortest Vector Problem in `2 norm; an old open problem. Our proofs use reductions from fewpr...
On the Power of MultiProver Interactive Protocols
 Theoretical Computer Science
, 1988
"... this paper we consider a further generalization of the proof system model, due to BenOr, Goldwasser, Kilian and Wigderson [6], where instead of a single prover there may be many. This apparently gives the model additional power. The intuition for this may be seen by considering the case of two crim ..."
Abstract

Cited by 132 (9 self)
 Add to MetaCart
this paper we consider a further generalization of the proof system model, due to BenOr, Goldwasser, Kilian and Wigderson [6], where instead of a single prover there may be many. This apparently gives the model additional power. The intuition for this may be seen by considering the case of two criminal suspects who are under interrogation to see if they are guilty of together robbing a bank. Of course they (the provers) are trying to convince Scotland Yard (the verifier) of their innocence. Assuming that they are in fact innocent, it is clear that their ability to convince the police of this is enhanced if they are questioned in separate rooms and can corroborate each other's stories without communicating. We shall see later in this paper that this sort of corroboration is the key to the additional power of multiple provers. Interactive proof systems have seen a number of important applications to cryptography [23, 22], algebraic complexity [3], program testing [7, 8] and distributed computation [16, 23]. For example, a chain of results concerning interactive proof systems [22, 3, 24, 9] conclude that if the graph isomorphism problem is NPcomplete then the polynomial time hierarchy collapses. Multipleprover interactive proof systems have also seen several important applications including the analysis of program testing [7, 4] and the complexity of approximation algorithms [14, 2, 1]. Brief summary of results: First we give a simple characterization of the power of the multiprover model in terms of probabilistic oracle Turing machines. Then we show that every language accepted by multiple prover interactive proof systems can be computed in nondeterministic exponential time. Babai, Fortnow and Lund [4] have since shown this bound is tight. We then show results like th...
Approximating the value of two prover proof systems, with applications to MAX 2SAT and MAX DICUT
 IN PROCEEDINGS OF THE THIRD ISRAEL SYMPOSIUM ON THEORY OF COMPUTING AND SYSTEMS
, 1995
"... It is well known that two prover proof systems are a convenient tool for establishing hardness of approximation results. In this paper, we show that two prover proof systems are also convenient starting points for establishing easiness of approximation results. Our approach combines the FeageLovdsz ..."
Abstract

Cited by 131 (9 self)
 Add to MetaCart
It is well known that two prover proof systems are a convenient tool for establishing hardness of approximation results. In this paper, we show that two prover proof systems are also convenient starting points for establishing easiness of approximation results. Our approach combines the FeageLovdsz (STOC92) semidefinite programming relaxation of oneround twoprover proof systems, together with rounding techniques for the solutions of semidefinite progmms, as introduced by Goemans and Williamson (STO C94). As a consequence of our approach, we present improved approximation algorithms for MAX 2SAT and MAX DICUT. The algorithms are guamnteed to deliver solutions within a factor of 0.931 of the optimum for MAX 2SAT and within a factor of 0.859 for MAX DICUT, improving upon the guarantees of 0.878 and 0.796 of Goemans and Williamson.