Results 1  10
of
82
Resolution is Not Automatizable Unless W[P] is Tractable
 IN 42ND ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE
, 2001
"... We show that neither Resolution nor treelike Resolution is automatizable unless the class W[P] from the hierarchy of parameterized problems is fixedparameter tractable by randomized algorithms with onesided error. ..."
Abstract

Cited by 60 (2 self)
 Add to MetaCart
We show that neither Resolution nor treelike Resolution is automatizable unless the class W[P] from the hierarchy of parameterized problems is fixedparameter tractable by randomized algorithms with onesided error.
Pseudorandom Generators Hard for kDNF Resolution and Polynomial Calculus Resolution
, 2003
"... A pseudorandom generator G n : f0; 1g is hard for a propositional proof system P if (roughly speaking) P can not ef ciently prove the statement G n (x 1 ; : : : ; x n ) 6= b for any string b 2 . We present a function (m 2 ) generator which is hard for Res( log n); here Res(k) is the ..."
Abstract

Cited by 50 (4 self)
 Add to MetaCart
A pseudorandom generator G n : f0; 1g is hard for a propositional proof system P if (roughly speaking) P can not ef ciently prove the statement G n (x 1 ; : : : ; x n ) 6= b for any string b 2 . We present a function (m 2 ) generator which is hard for Res( log n); here Res(k) is the propositional proof system that extends Resolution by allowing kDNFs instead of clauses.
Computational properties of argument systems satisfying graphtheoretic constraints
 Artificial Intelligence
, 2007
"... One difficulty that arises in abstract argument systems is that many natural questions regarding argument acceptability are, in general, computationally intractable having been classified as complete for classes such as NP, coNP, and ¢¡ £. In consequence, a number of researchers have considered me ..."
Abstract

Cited by 50 (9 self)
 Add to MetaCart
(Show Context)
One difficulty that arises in abstract argument systems is that many natural questions regarding argument acceptability are, in general, computationally intractable having been classified as complete for classes such as NP, coNP, and ¢¡ £. In consequence, a number of researchers have considered methods for specialising the structure of such systems so as to identify classes for which efficient decision processes exist. In this paper the effect of a number of graphtheoretic restrictions is considered: ¤partite systems (¤¦¥¨ § ) in which the set of arguments may be partitioned into ¤ sets each of which is conflictfree; systems in which the numbers of attacks originating from and made upon any argument are bounded; planar systems; and, finally, those of ¤bounded treewidth. For the class of bipartite graphs, it is shown that determining the acceptability status of a specific argument can be accomplished in polynomialtime under both credulous and sceptical semantics. In addition we establish the existence of polynomial time methods for systems having bounded treewidth when deciding the following: whether a given (set of) arguments is credulously accepted; if the system has a nonempty preferred extension; has a stable extension; is coherent;
Space Complexity In Propositional Calculus
 SIAM JOURNAL OF COMPUTING
, 2002
"... We study space complexity in the framework of propositional proofs. We consider a natural model analogous to Turing machines with a readonly input tape and such popular propositional proof systems as resolution, polynomial calculus, and Frege systems. We propose two di#erent space measures, corresp ..."
Abstract

Cited by 49 (8 self)
 Add to MetaCart
We study space complexity in the framework of propositional proofs. We consider a natural model analogous to Turing machines with a readonly input tape and such popular propositional proof systems as resolution, polynomial calculus, and Frege systems. We propose two di#erent space measures, corresponding to the maximal number of bits, and clauses/monomials that need to be kept in the memory simultaneously. We prove a number of lower and upper bounds in these models, as well as some structural results concerning the clause space for resolution and Frege systems.
Satisfiability Solvers
, 2008
"... The past few years have seen an enormous progress in the performance of Boolean satisfiability (SAT) solvers. Despite the worstcase exponential run time of all known algorithms, satisfiability solvers are increasingly leaving their mark as a generalpurpose tool in areas as diverse as software and h ..."
Abstract

Cited by 48 (0 self)
 Add to MetaCart
The past few years have seen an enormous progress in the performance of Boolean satisfiability (SAT) solvers. Despite the worstcase exponential run time of all known algorithms, satisfiability solvers are increasingly leaving their mark as a generalpurpose tool in areas as diverse as software and hardware verification [29–31, 228], automatic test pattern generation [138, 221], planning [129, 197], scheduling [103], and even challenging problems from algebra [238]. Annual SAT competitions have led to the development of dozens of clever implementations of such solvers [e.g. 13,
Lower Bounds for Polynomial Calculus: NonBinomial Case
, 2001
"... We generalize recent linear lower bounds for Polynomial Calculus based on binomial ideals. We produce a general hardness criterion (that we call immunity) which is satisfied by a random function and prove linear lower bounds on the degree of PC refutations for a wide class of tautologies based on im ..."
Abstract

Cited by 45 (9 self)
 Add to MetaCart
We generalize recent linear lower bounds for Polynomial Calculus based on binomial ideals. We produce a general hardness criterion (that we call immunity) which is satisfied by a random function and prove linear lower bounds on the degree of PC refutations for a wide class of tautologies based on immune functions. As some applications of our techniques, we introduce mod p Tseitin tautologies in the Boolean case (e.g. in the presence of axioms x 2 i = x i ), prove that they are hard for PC over fields with characteristic different from p, and generalize them to Flow tautologies which are based on the MAJORITY function and are proved to be hard over any field. We also show the Ω(n) lower bound for random kCNF's over fields of characteristic 2.
A Switching Lemma for Small Restrictions and Lower Bounds for kDNF Resolution (Extended Abstract)
 SIAM J. Comput
, 2002
"... We prove a new switching lemma that works for restrictions that set only a small fraction of the variables and is applicable to DNFs with small conjunctions. We use this to prove lower bounds for the Res(k) propositional proof system, an extension of resolution which works with kDNFs instead of cla ..."
Abstract

Cited by 44 (7 self)
 Add to MetaCart
(Show Context)
We prove a new switching lemma that works for restrictions that set only a small fraction of the variables and is applicable to DNFs with small conjunctions. We use this to prove lower bounds for the Res(k) propositional proof system, an extension of resolution which works with kDNFs instead of clauses. We also obtain an exponential separation between depth d circuits of k + 1.
Setting 2 variables at a time yields a new lower bound for random 3SAT (Extended Abstract)
 STOC
, 2000
"... Let X be a set of n Boolean variables and denote by C(X) the set of all 3clauses over X, i.e. the set of all 8(3) possible disjunctions of three distinct, noncomplementary literais from variables in X. Let F(n, m) be a random 3SAT formula formed by selecting, with replacement, m clauses uniformly ..."
Abstract

Cited by 38 (5 self)
 Add to MetaCart
(Show Context)
Let X be a set of n Boolean variables and denote by C(X) the set of all 3clauses over X, i.e. the set of all 8(3) possible disjunctions of three distinct, noncomplementary literais from variables in X. Let F(n, m) be a random 3SAT formula formed by selecting, with replacement, m clauses uniformly at random from C(X) and taking their conjunction. The satisfiability threshold conjecture asserts that there exists a constant ra such that as n+ c¢, F(n, rn) is satisfiable with probability that tends to 1 if r < ra, but unsatisfiable with probability that tends to 1 if r:> r3. Experimental evidence suggests rz ~ 4.2. We prove rz> 3.145 improving over the previous best lower bound r3> 3.003 due to Frieze and Suen. For this, we introduce a satisfiability heuristic that works iteratively, permanently setting the value of a pair of variables in each round. The framework we develop for the analysis of our heuristic allows us to also derive most previous lower bounds for random 3SAT in a uniform manner and with little effort.
Resolution lower bounds for perfect matching principles
 Journal of Computer and System Sciences
"... For an arbitrary hypergraph H, letPM(H) be the propositional formula asserting that H contains a perfect matching. We show that every resolution refutation of PM(H) musthavesize exp Ω δ(H) λ(H)r(H)(log n(H))(r(H)+logn(H)) where n(H) is the number of vertices, δ(H) is the minimal degree of a vertex, ..."
Abstract

Cited by 37 (5 self)
 Add to MetaCart
(Show Context)
For an arbitrary hypergraph H, letPM(H) be the propositional formula asserting that H contains a perfect matching. We show that every resolution refutation of PM(H) musthavesize exp Ω δ(H) λ(H)r(H)(log n(H))(r(H)+logn(H)) where n(H) is the number of vertices, δ(H) is the minimal degree of a vertex, r(H) is the maximal size of an edge, and λ(H) is the maximal number of edges incident to two different vertices. For ordinary graphs G our general bound considerably simplifies to exp Ω (implying an exp(Ω(δ(G) 1/3)) lower bound that depends on the minimal degree only). As a direct corollary, every resolution proof of the functional ( ( onto)) version of must have size exp Ω (which the pigeonhole principle onto − FPHP m n n (log m) 2 δ(G) (log n(G)) 2 becomes exp ( Ω(n 1/3) ) when the number of pigeons m is unbounded). This in turn immediately implies an exp(Ω(t/n 3)) lower bound on the size of resolution proofs of the principle asserting that the circuit size of the Boolean function fn in n variables is greater than t. Inparticular,Resolution does not possess efficient proofs of NP ⊆ P/poly. These results relativize, in a natural way, to a more general principle M(UH) asserting that H contains a matching covering all vertices in U ⊆ V (H).