Results 11  20
of
966
The Kernel Recursive Least Squares Algorithm
 IEEE Transactions on Signal Processing
, 2003
"... We present a nonlinear kernelbased version of the Recursive Least Squares (RLS) algorithm. Our KernelRLS (KRLS) algorithm performs linear regression in the feature space induced by a Mercer kernel, and can therefore be used to recursively construct the minimum mean squared error regressor. Spars ..."
Abstract

Cited by 141 (2 self)
 Add to MetaCart
(Show Context)
We present a nonlinear kernelbased version of the Recursive Least Squares (RLS) algorithm. Our KernelRLS (KRLS) algorithm performs linear regression in the feature space induced by a Mercer kernel, and can therefore be used to recursively construct the minimum mean squared error regressor. Sparsity of the solution is achieved by a sequential sparsification process that admits into the kernel representation a new input sample only if its feature space image cannot be suffciently well approximated by combining the images of previously admitted samples. This sparsification procedure is crucial to the operation of KRLS, as it allows it to operate online, and by effectively regularizing its solutions. A theoretical analysis of the sparsification method reveals its close affinity to kernel PCA, and a datadependent loss bound is presented, quantifying the generalization performance of the KRLS algorithm. We demonstrate the performance and scaling properties of KRLS and compare it to a stateof theart Support Vector Regression algorithm, using both synthetic and real data. We additionally test KRLS on two signal processing problems in which the use of traditional leastsquares methods is commonplace: Time series prediction and channel equalization.
Fast Marginal Likelihood Maximisation for Sparse Bayesian Models
 Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics
, 2003
"... The 'sparse Bayesian' modelling approach, as exemplified by the 'relevance vector machine ', enables sparse classification and regression functions to be obtained by linearlyweighting a small nmnber of fixed basis functions from a large dictionary of potential candidates. S ..."
Abstract

Cited by 117 (0 self)
 Add to MetaCart
The 'sparse Bayesian' modelling approach, as exemplified by the 'relevance vector machine ', enables sparse classification and regression functions to be obtained by linearlyweighting a small nmnber of fixed basis functions from a large dictionary of potential candidates. Such a model conveys a nmnber of advantages over the related and very popular 'support vector machine', but the necessary 'training' procedure optimisation of the marginal likelihood function is typically much slower. We describe a new and highly accelerated algorithm which exploits recentlyelucidated properties of the marginal likelihood function to enable maximisation via a principled and efficient sequential addition and deletion of candidate basis functions.
Discriminative Density Propagation for 3D Human Motion Estimation
 In CVPR
, 2005
"... We describe a mixture density propagation algorithm to estimate 3D human motion in monocular video sequences based on observations encoding the appearance of image silhouettes. Our approach is discriminative rather than generative, therefore it does not require the probabilistic inversion of a predi ..."
Abstract

Cited by 114 (16 self)
 Add to MetaCart
(Show Context)
We describe a mixture density propagation algorithm to estimate 3D human motion in monocular video sequences based on observations encoding the appearance of image silhouettes. Our approach is discriminative rather than generative, therefore it does not require the probabilistic inversion of a predictive observation model. Instead, it uses a large human motion capture database and a 3D computer graphics human model in order to synthesize training pairs of typical human configurations together with their realistically rendered 2D silhouettes. These are used to directly learn to predict the conditional state distributions required for 3D body pose tracking and thus avoid using the generative 3D model for inference (the learned discriminative predictors can also be used, complementary, as importance samplers in order to improve mixing or initialize generative inference algorithms). We aim for probabilistically motivated tracking algorithms and for models that can represent complex multivalued mappings common in inverse, uncertain perception inferences. Our paper has three contributions: (1) we establish the density propagation rules for discriminative inference in continuous, temporal chain models; (2) we propose flexible algorithms for learning multimodal state distributions based on compact, conditional Bayesian mixture of experts models; and (3) we demonstrate the algorithms empirically on real and motion capturebased test sequences and compare against nearestneighbor and regression methods.
Bayesian inference and optimal design in the sparse linear model
 Workshop on Artificial Intelligence and Statistics
"... The linear model with sparsityfavouring prior on the coefficients has important applications in many different domains. In machine learning, most methods to date search for maximum a posteriori sparse solutions and neglect to represent posterior uncertainties. In this paper, we address problems of ..."
Abstract

Cited by 111 (13 self)
 Add to MetaCart
The linear model with sparsityfavouring prior on the coefficients has important applications in many different domains. In machine learning, most methods to date search for maximum a posteriori sparse solutions and neglect to represent posterior uncertainties. In this paper, we address problems of Bayesian optimal design (or experiment planning), for which accurate estimates of uncertainty are essential. To this end, we employ expectation propagation approximate inference for the linear model with Laplace prior, giving new insight into numerical stability properties and proposing a robust algorithm. We also show how to estimate model hyperparameters by empirical Bayesian maximisation of the marginal likelihood, and propose ideas in order to scale up the method to very large underdetermined problems. We demonstrate the versatility of our framework on the application of gene regulatory network identification from microarray expression data, where both the Laplace prior and the active experimental design approach are shown to result in significant improvements. We also address the problem of sparse coding of natural images, and show how our framework can be used for compressive sensing tasks. Part of this work appeared in Seeger et al. (2007b). The gene network identification application appears in Steinke et al. (2007).
Fast Forward Selection to Speed Up Sparse Gaussian Process Regression
 IN WORKSHOP ON AI AND STATISTICS 9
, 2003
"... We present a method for the sparse greedy approximation of Bayesian Gaussian process regression, featuring a novel heuristic for very fast forward selection. Our method is essentially as fast as an equivalent one which selects the "support" patterns at random, yet it can outperform random ..."
Abstract

Cited by 110 (7 self)
 Add to MetaCart
We present a method for the sparse greedy approximation of Bayesian Gaussian process regression, featuring a novel heuristic for very fast forward selection. Our method is essentially as fast as an equivalent one which selects the "support" patterns at random, yet it can outperform random selection on hard curve fitting tasks. More importantly, it leads to a sufficiently stable approximation of the log marginal likelihood of the training data, which can be optimised to adjust a large number of hyperparameters automatically.
Learning to parse pictures of people
 In European Conference on Computer Vision
, 2002
"... Abstract. Detecting people in images is a key problem for video indexing, browsing and retrieval. The main difficulties are the large appearance variations caused by action, clothing, illumination, viewpoint and scale. Our goal is to find people in static video frames using learned models of both th ..."
Abstract

Cited by 109 (6 self)
 Add to MetaCart
(Show Context)
Abstract. Detecting people in images is a key problem for video indexing, browsing and retrieval. The main difficulties are the large appearance variations caused by action, clothing, illumination, viewpoint and scale. Our goal is to find people in static video frames using learned models of both the appearance of body parts (head, limbs, hands), and of the geometry of their assemblies. We build on Forsyth & Fleck’s general ‘body plan ’ methodology and Felzenszwalb & Huttenlocher’s dynamic programming approach for efficiently assembling candidate parts into ‘pictorial structures’. However we replace the rather simple part detectors used in these works with dedicated detectors learned for each body part using Support Vector Machines (SVMs) or Relevance Vector Machines (RVMs). We are not aware of any previous work using SVMs to learn articulated body plans, however they have been used to detect both whole pedestrians and combinations of rigidly positioned subimages (typically, upper body, arms, and legs) in street scenes, under a wide range of illumination, pose and clothing variations. RVMs are SVMlike classifiers that offer a wellfounded probabilistic interpretation and improved sparsity for reduced computation. We demonstrate their benefits experimentally in a series of results showing great promise for learning detectors in more general situations.
Hermeneutics: Interpretation Theory
 in Schleiermacher, Dilthey, Heidegger and Gadamer, Northwestern University Studies in Phenomenology & Existential Philosophy
, 1969
"... Report on proposed doctoral thesis: ..."
Building Support Vector Machines with Reduced Classifier Complexity
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2006
"... Support vector machines (SVMs), though accurate, are not preferred in applications requiring great classification speed, due to the number of support vectors being large. To overcome this problem we devise a primal method with the following properties: (1) it decouples the idea of basis functions ..."
Abstract

Cited by 95 (2 self)
 Add to MetaCart
Support vector machines (SVMs), though accurate, are not preferred in applications requiring great classification speed, due to the number of support vectors being large. To overcome this problem we devise a primal method with the following properties: (1) it decouples the idea of basis functions from the concept of support vectors; (2) it greedily finds a set of kernel basis functions of a specified maximum size (d max ) to approximate the SVM primal cost function well; (3) it is efficient and roughly scales as O(nd max ) where n is the number of training examples; and, (4) the number of basis functions it requires to achieve an accuracy close to the SVM accuracy is usually far less than the number of SVM support vectors.
NonParametric Bayesian Dictionary Learning for Sparse Image Representations
"... Nonparametric Bayesian techniques are considered for learning dictionaries for sparse image representations, with applications in denoising, inpainting and compressive sensing (CS). The beta process is employed as a prior for learning the dictionary, and this nonparametric method naturally infers ..."
Abstract

Cited by 92 (34 self)
 Add to MetaCart
(Show Context)
Nonparametric Bayesian techniques are considered for learning dictionaries for sparse image representations, with applications in denoising, inpainting and compressive sensing (CS). The beta process is employed as a prior for learning the dictionary, and this nonparametric method naturally infers an appropriate dictionary size. The Dirichlet process and a probit stickbreaking process are also considered to exploit structure within an image. The proposed method can learn a sparse dictionary in situ; training images may be exploited if available, but they are not required. Further, the noise variance need not be known, and can be nonstationary. Another virtue of the proposed method is that sequential inference can be readily employed, thereby allowing scaling to large images. Several example results are presented, using both Gibbs and variational Bayesian inference, with comparisons to other stateoftheart approaches.