Results 1 
3 of
3
A syntactic approach to foundational proofcarrying code
 In Seventeenth IEEE Symposium on Logic in Computer Science
, 2002
"... ProofCarrying Code (PCC) is a general framework for verifying the safety properties of machinelanguage programs. PCC proofs are usually written in a logic extended with languagespecific typing rules. In Foundational ProofCarrying Code (FPCC), on the other hand, proofs are constructed and verifie ..."
Abstract

Cited by 96 (19 self)
 Add to MetaCart
ProofCarrying Code (PCC) is a general framework for verifying the safety properties of machinelanguage programs. PCC proofs are usually written in a logic extended with languagespecific typing rules. In Foundational ProofCarrying Code (FPCC), on the other hand, proofs are constructed and verified using strictly the foundations of mathematical logic, with no typespecific axioms. FPCC is more flexible and secure because it is not tied to any particular type system and it has a smaller trusted base. Foundational proofs, however, are much harder to construct. Previous efforts on FPCC all required building sophisticated semantic models for types. In this paper, we present a syntactic approach to FPCC that avoids the difficulties of previous work. Under our new scheme, the foundational proof for a typed machine program simply consists of the typing derivation plus the formalized syntactic soundness proof for the underlying type system. We give a translation from a typed assembly language into FPCC and demonstrate the advantages of our new system via an implementation in the Coq proof assistant. 1.
A HigherOrder Specification of the πCalculus
, 2000
"... We present a formalization of a typed picalculus in the Calculus of Inductive Constructions. We give the rules for typechecking and for evaluation and formalize a proof of type preservation in the Coq system. The encoding of the picalculus in Coq uses Coq fonctions to represent bindings of variab ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
We present a formalization of a typed picalculus in the Calculus of Inductive Constructions. We give the rules for typechecking and for evaluation and formalize a proof of type preservation in the Coq system. The encoding of the picalculus in Coq uses Coq fonctions to represent bindings of variables. This kind of encoding is called a higherorder specication. It provides a concise description of the calculus, leading to simple proofs. The specification we propose for the picalculus formalizes communication by means of function application.
Reasoning about Objectbased Calculi in (Co)Inductive Type Theory and the Theory of Contexts ∗
"... Abstract. We illustrate a methodology for formalizing and reasoning about Abadi and Cardelli’s objectbased calculi, in (co)inductive type theory, such as the Calculus of (Co)Inductive Constructions, by taking advantage of Natural Deduction Semantics and coinduction in combination with weak HigherO ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
Abstract. We illustrate a methodology for formalizing and reasoning about Abadi and Cardelli’s objectbased calculi, in (co)inductive type theory, such as the Calculus of (Co)Inductive Constructions, by taking advantage of Natural Deduction Semantics and coinduction in combination with weak HigherOrder Abstract Syntax and the Theory of Contexts. Our methodology allows to implement smoothly the calculi in the target metalanguage; moreover, it suggests novel presentations of the calculi themselves. In detail, we present a compact formalization of the syntax and semantics for the functional and the imperative variants of the ςcalculus. Our approach simplifies the proof of Subject Reduction theorems, which are proved formally in the proof assistant Coq with a relatively small overhead.