Results 1 
2 of
2
Gödel on computability
"... Around 1950, both Gödel and Turing wrote papers for broader audiences. 1 Gödel drew in his 1951 dramatic philosophical conclusions from the general formulation of his second incompleteness theorem. These conclusions concerned the nature of mathematics and the human mind. The general formulation of t ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
Around 1950, both Gödel and Turing wrote papers for broader audiences. 1 Gödel drew in his 1951 dramatic philosophical conclusions from the general formulation of his second incompleteness theorem. These conclusions concerned the nature of mathematics and the human mind. The general formulation of the second theorem was explicitly based on Turing’s 1936 reduction of finite procedures to machine computations. Turing gave in his 1954 an understated analysis of finite procedures in terms of Post production systems. This analysis, prima facie quite different from that given in 1936, served as the basis for an exposition of various unsolvable problems. Turing had addressed issues of mentality and intelligence in contemporaneous essays, the best known of which is of course Computing machinery and intelligence. Gödel’s and Turing’s considerations from this period intersect through their attempt, on the one hand, to analyze finite, mechanical procedures and, on the other hand, to approach mental phenomena in a scientific way. Neuroscience or brain science was an important component of the latter for both: Gödel’s remarks in the Gibbs Lecture as well as in his later conversations with Wang and Turing’s Intelligent Machinery can serve as clear evidence for that. 2 Both men were convinced that some mental processes are not mechanical, in the sense that Turing machines cannot mimic them. For Gödel, such processes were to be found in mathematical experience and he was led to the conclusion that mind is separate from matter. Turing simply noted that for a machine or a brain it is not enough to be converted into a universal (Turing) machine in order to become intelligent: “discipline”, the characteristic
Handbook of the History of Logic. Volume 6
"... ABSTRACT: Here is a crude list, possibly summarizing the role of paradoxes within the framework of mathematical logic: 1. directly motivating important theories (e.g. type theory, axiomatic set theory, combinatory logic); 2. suggesting methods of proving fundamental metamathematical results (fixed p ..."
Abstract
 Add to MetaCart
ABSTRACT: Here is a crude list, possibly summarizing the role of paradoxes within the framework of mathematical logic: 1. directly motivating important theories (e.g. type theory, axiomatic set theory, combinatory logic); 2. suggesting methods of proving fundamental metamathematical results (fixed point theorems, incompleteness, undecidability, undefinability); 3. applying inductive definability and generalized recursion; 4. introducing new semantical methods (e. g. revision theory, semiinductive definitions, which require nontrivial set theoretic results); 5. (partly) enhancing new axioms in set theory: the case of antifoundation AFA and the mathematics of circular phenomena; 6. suggesting the investigation of nonclassical logical systems, from contractionfree and manyvalued logics to systems with generalized quantifiers; 7. suggesting frameworks with flexible typing for the foundations of Mathematics and Computer Science; 8. applying forms of selfreferential truth and in Artificial Intelligence, Theoretical Linguistics, etc. Below we attempt to shed some light on the genesis of the issues 1–8 through the history of the paradoxes in the twentieth century, with a special emphasis on semantical aspects.