Results 1  10
of
249
A DecisionTheoretic Generalization of onLine Learning and an Application to Boosting
, 1997
"... In the first part of the paper we consider the problem of dynamically apportioning resources among a set of options in a worstcase online framework. The model we study can be interpreted as a broad, abstract extension of the wellstudied online prediction model to a general decisiontheoretic set ..."
Abstract

Cited by 2307 (59 self)
 Add to MetaCart
In the first part of the paper we consider the problem of dynamically apportioning resources among a set of options in a worstcase online framework. The model we study can be interpreted as a broad, abstract extension of the wellstudied online prediction model to a general decisiontheoretic setting. We show that the multiplicative weightupdate rule of Littlestone and Warmuth [20] can be adapted to this model yielding bounds that are slightly weaker in some cases, but applicable to a considerably more general class of learning problems. We show how the resulting learning algorithm can be applied to a variety of problems, including gambling, multipleoutcome prediction, repeated games and prediction of points in R n . In the second part of the paper we apply the multiplicative weightupdate technique to derive a new boosting algorithm. This boosting algorithm does not require any prior knowledge about the performance of the weak learning algorithm. We also study generalizations of...
Wrappers for feature subset selection
 ARTIFICIAL INTELLIGENCE
, 1997
"... In the feature subset selection problem, a learning algorithm is faced with the problem of selecting a relevant subset of features upon which to focus its attention, while ignoring the rest. To achieve the best possible performance with a particular learning algorithm on a particular training set, a ..."
Abstract

Cited by 1023 (3 self)
 Add to MetaCart
In the feature subset selection problem, a learning algorithm is faced with the problem of selecting a relevant subset of features upon which to focus its attention, while ignoring the rest. To achieve the best possible performance with a particular learning algorithm on a particular training set, a feature subset selection method should consider how the algorithm and the training set interact. We explore the relation between optimal feature subset selection and relevance. Our wrapper method searches for an optimal feature subset tailored to a particular algorithm and a domain. We study the strengths and weaknesses of the wrapper approach and show a series of improved designs. We compare the wrapper approach to induction without feature subset selection and to Relief, a filter approach to feature subset selection. Significant improvement in accuracy is achieved for some datasets for the two families of induction algorithms used: decision trees and
Selection of relevant features and examples in machine learning
 ARTIFICIAL INTELLIGENCE
, 1997
"... In this survey, we review work in machine learning on methods for handling data sets containing large amounts of irrelevant information. We focus on two key issues: the problem of selecting relevant features, and the problem of selecting relevant examples. We describe the advances that have been mad ..."
Abstract

Cited by 423 (1 self)
 Add to MetaCart
In this survey, we review work in machine learning on methods for handling data sets containing large amounts of irrelevant information. We focus on two key issues: the problem of selecting relevant features, and the problem of selecting relevant examples. We describe the advances that have been made on these topics in both empirical and theoretical work in machine learning, and we present a general framework that we use to compare different methods. We close with some challenges for future work in this area.
Large Margin Classification Using the Perceptron Algorithm
 Machine Learning
, 1998
"... We introduce and analyze a new algorithm for linear classification which combines Rosenblatt 's perceptron algorithm with Helmbold and Warmuth's leaveoneout method. Like Vapnik 's maximalmargin classifier, our algorithm takes advantage of data that are linearly separable with large margins. Compa ..."
Abstract

Cited by 415 (1 self)
 Add to MetaCart
We introduce and analyze a new algorithm for linear classification which combines Rosenblatt 's perceptron algorithm with Helmbold and Warmuth's leaveoneout method. Like Vapnik 's maximalmargin classifier, our algorithm takes advantage of data that are linearly separable with large margins. Compared to Vapnik's algorithm, however, ours is much simpler to implement, and much more efficient in terms of computation time. We also show that our algorithm can be efficiently used in very high dimensional spaces using kernel functions. We performed some experiments using our algorithm, and some variants of it, for classifying images of handwritten digits. The performance of our algorithm is close to, but not as good as, the performance of maximalmargin classifiers on the same problem, while saving significantly on computation time and programming effort. 1 Introduction One of the most influential developments in the theory of machine learning in the last few years is Vapnik's work on supp...
The nonstochastic multiarmed bandit problem
 SIAM Journal on Computing
, 2002
"... In the multiarmed bandit problem, a gambler must decide which arm of £ nonidentical slot machines to play in a sequence of trials so as to maximize his reward. This classical problem has received much attention because of the simple model it provides of the tradeoff between exploration (trying ou ..."
Abstract

Cited by 316 (27 self)
 Add to MetaCart
In the multiarmed bandit problem, a gambler must decide which arm of £ nonidentical slot machines to play in a sequence of trials so as to maximize his reward. This classical problem has received much attention because of the simple model it provides of the tradeoff between exploration (trying out each arm to find the best one) and exploitation (playing the arm believed to give the best payoff). Past solutions for the bandit problem have almost always relied on assumptions about the statistics of the slot machines. In this work, we make no statistical assumptions whatsoever about the nature of the process generating the payoffs of the slot machines. We give a solution to the bandit problem in which an adversary, rather than a wellbehaved stochastic process, has complete control over the payoffs. In a sequence of ¤ plays, we prove that the perround payoff of our algorithm approaches that of the best arm at the rate ¥§¦¨¤�©������� �. We show by a matching lower bound that this is best possible. We also prove that our algorithm approaches the perround payoff of any set of strategies at a similar rate: if the best strategy is chosen from a pool of � strategies then our algorithm approaches the perround payoff of the strategy at the rate ¥ ¦��¨���� � �§ � ���� � ¤ ©����� � �. Finally, we apply our results to the problem of playing an unknown repeated matrix game. We show that our algorithm approaches the minimax payoff of the unknown game at the rate ¥ ¦ ¤ ©����� � �.
ContextSensitive Learning Methods for Text Categorization
 ACM Transactions on Information Systems
, 1996
"... this article, we will investigate the performance of two recently implemented machinelearning algorithms on a number of large text categorization problems. The two algorithms considered are setvalued RIPPER, a recent rulelearning algorithm [Cohen A earlier version of this article appeared in Proc ..."
Abstract

Cited by 247 (13 self)
 Add to MetaCart
this article, we will investigate the performance of two recently implemented machinelearning algorithms on a number of large text categorization problems. The two algorithms considered are setvalued RIPPER, a recent rulelearning algorithm [Cohen A earlier version of this article appeared in Proceedings of the 19th Annual International ACM Conference on Research and Development in Information Retrieval (SIGIR) pp. 307315
Exponentiated Gradient Versus Gradient Descent for Linear Predictors
 Information and Computation
, 1995
"... this paper, we concentrate on linear predictors . To any vector u 2 R ..."
Abstract

Cited by 247 (12 self)
 Add to MetaCart
this paper, we concentrate on linear predictors . To any vector u 2 R
Tracking the best expert
 In Proceedings of the 12th International Conference on Machine Learning
, 1995
"... Abstract. We generalize the recent relative loss bounds for online algorithms where the additional loss of the algorithm on the whole sequence of examples over the loss of the best expert is bounded. The generalization allows the sequence to be partitioned into segments, and the goal is to bound th ..."
Abstract

Cited by 198 (18 self)
 Add to MetaCart
Abstract. We generalize the recent relative loss bounds for online algorithms where the additional loss of the algorithm on the whole sequence of examples over the loss of the best expert is bounded. The generalization allows the sequence to be partitioned into segments, and the goal is to bound the additional loss of the algorithm over the sum of the losses of the best experts for each segment. This is to model situations in which the examples change and different experts are best for certain segments of the sequence of examples. In the single segment case, the additional loss is proportional to log n, where n is the number of experts and the constant of proportionality depends on the loss function. Our algorithms do not produce the best partition; however the loss bound shows that our predictions are close to those of the best partition. When the number of segments is k +1and the sequence is of length ℓ, we can bound the additional loss of our algorithm over the best partition by O(k log n + k log(ℓ/k)). For the case when the loss per trial is bounded by one, we obtain an algorithm whose additional loss over the loss of the best partition is independent of the length of the sequence. The additional loss becomes O(k log n + k log(L/k)), where L is the loss of the best partition with k +1segments. Our algorithms for tracking the predictions of the best expert are simple adaptations of Vovk’s original algorithm for the single best expert case. As in the original algorithms, we keep one weight per expert, and spend O(1) time per weight in each trial.
Gambling in a rigged casino: The adversarial multiarmed bandit problem
, 1995
"... In the multiarmed bandit problem, a gambler must decide which arm of K nonidentical slot machines to play in a sequence of trials so as to maximize his reward. This classical problem has received much attention because of the simple model it provides of the tradeoff between exploration (trying ou ..."
Abstract

Cited by 189 (7 self)
 Add to MetaCart
In the multiarmed bandit problem, a gambler must decide which arm of K nonidentical slot machines to play in a sequence of trials so as to maximize his reward. This classical problem has received much attention because of the simple model it provides of the tradeoff between exploration (trying out each arm to find the best one) and exploitation (playing the arm believed to give the best payoff). Past solutions for the bandit problem have almost always relied on assumptions about the statistics of the slot machines. In this work, we make no statistical assumptions whatsoever about the nature of the process generating the payoffs of the slot machines. We give a solution to the bandit problem in which an adversary, rather than a wellbehaved stochastic process, has complete control over the payoffs. In a sequence of T plays, we prove that the expected perround payoff of our algorithm approaches that of the best arm at the rate O(T \Gamma1=2 ), and we give an improved rate of conver...
A Dynamic Disk SpinDown Technique for Mobile Computing
, 1996
"... We address the problem of deciding when to spin down the disk of a mobile computer in order to extend battery life. Since one of the most critical resources in mobile computing environments is battery life, good energy conservation methods can dramatically increase the utility of mobile systems. We ..."
Abstract

Cited by 154 (7 self)
 Add to MetaCart
We address the problem of deciding when to spin down the disk of a mobile computer in order to extend battery life. Since one of the most critical resources in mobile computing environments is battery life, good energy conservation methods can dramatically increase the utility of mobile systems. We use a simple and efficient algorithm based on machine learning techniques that has excellent performance in practice. Our experimental results are based on traces collected from HP C2474s disks. Using this data, the algorithm outperforms several algorithms that are theoretically optimal in under various worstcase assumptions, as well as the best fixed timeout strategy. In particular, the algorithm reduces the power consumption of the disk to about half (depending on the disk's properties) of the energy consumed by a one minute fixed timeout. Since the algorithm adapts to usage patterns, it uses as little as 88% of the energy consumed by the best fixed timeout computed in retrospect. 1 In...