Results 1  10
of
76
Fresh Logic
 Journal of Applied Logic
, 2007
"... Abstract. The practice of firstorder logic is replete with metalevel concepts. Most notably there are metavariables ranging over formulae, variables, and terms, and properties of syntax such as alphaequivalence, captureavoiding substitution and assumptions about freshness of variables with resp ..."
Abstract

Cited by 183 (21 self)
 Add to MetaCart
Abstract. The practice of firstorder logic is replete with metalevel concepts. Most notably there are metavariables ranging over formulae, variables, and terms, and properties of syntax such as alphaequivalence, captureavoiding substitution and assumptions about freshness of variables with respect to metavariables. We present oneandahalfthorder logic, in which these concepts are made explicit. We exhibit both sequent and algebraic specifications of oneandahalfthorder logic derivability, show them equivalent, show that the derivations satisfy cutelimination, and prove correctness of an interpretation of firstorder logic within it. We discuss the technicalities in a wider context as a casestudy for nominal algebra, as a logic in its own right, as an algebraisation of logic, as an example of how other systems might be treated, and also as a theoretical foundation
Type inference with constrained types
 Fourth International Workshop on Foundations of ObjectOriented Programming (FOOL)
, 1997
"... We present a general framework HM(X) for type systems with constraints. The framework stays in the tradition of the Hindley/Milner type system. Its type system instances are sound under a standard untyped compositional semantics. We can give a generic type inference algorithm for HM(X) so that, unde ..."
Abstract

Cited by 46 (5 self)
 Add to MetaCart
We present a general framework HM(X) for type systems with constraints. The framework stays in the tradition of the Hindley/Milner type system. Its type system instances are sound under a standard untyped compositional semantics. We can give a generic type inference algorithm for HM(X) so that, under sufficient conditions on X, type inference will always compute the principal type of a term. We discuss instances of the framework that deal with polymorphic records, equational theories and subtypes.
The Origin of Relation Algebras in the Development and Axiomatization of the Calculus of Relations
, 1991
"... ..."
Generalized Semantics and Abstract Interpretation for Constraint Logic Programs
, 1995
"... We present a simple and powerful generalized algebraic semantics for constraint logic programs that is parameterized with respect to the underlying constraint system. The idea is to abstract away from standard semantic objects by focusing on the general properties of any possibly nonstandard ..."
Abstract

Cited by 38 (5 self)
 Add to MetaCart
We present a simple and powerful generalized algebraic semantics for constraint logic programs that is parameterized with respect to the underlying constraint system. The idea is to abstract away from standard semantic objects by focusing on the general properties of any possibly nonstandard  semantic definition. In constraint logic programming, this corresponds to a suitable definition of the constraint system supporting the semantic definition. An algebraic structure is introduced to formalize the notion of a constraint system, thus making classical mathematical results applicable. Both topdown and bottomup semantics are considered. Nonstandard semantics for constraint logic programs can then be formally specified using the same techniques used to define standard semantics. Different nonstandard semantics for constraint logic languages can be specified in this ...
A Generalized Semantics for Constraint Logic Programs
, 1992
"... We present a simple and powerful generalized algebraic semantics for constraint logic programs that is parameterized with respect to the underlying constraint system. "Generalized semantics" abstract away from standard semantics objects, by focusing on the general properties of any (possibly nonsta ..."
Abstract

Cited by 32 (13 self)
 Add to MetaCart
We present a simple and powerful generalized algebraic semantics for constraint logic programs that is parameterized with respect to the underlying constraint system. "Generalized semantics" abstract away from standard semantics objects, by focusing on the general properties of any (possibly nonstandard) semantics definition. In constraint logic programming, this corresponds to a suitable definition of the constraint system supporting the semantics definition. An algebraic structure is introduced to formalize the constraint system notion, thus making applicable classical mathematical results and both a topdown and bottomup semantics are considered. Nonstandard semantics for CLP can then be formally specified by means of the same techniques used to define standard semantics. Different nonstandard semantics for constraint logic languages can be specified in this framework: e.g. abstract interpretation, machine level traces and any computation based on an instance of the constraint system.
Back and Forth Between Modal Logic and Classical Logic
, 1994
"... Model Theory. That is, we have a nonempty family I of partial isomorphisms between two models M and N, which is closed under taking restrictions to smaller domains, and where the standard BackandForth properties are now restricted to apply only to partial isomorphisms of size at most k. Proof. ..."
Abstract

Cited by 30 (3 self)
 Add to MetaCart
Model Theory. That is, we have a nonempty family I of partial isomorphisms between two models M and N, which is closed under taking restrictions to smaller domains, and where the standard BackandForth properties are now restricted to apply only to partial isomorphisms of size at most k. Proof. (A complete argument is in [16].) An outline is reproduced here, for convenience. First, kvariable formulas are preserved under partial isomorphism, by a simple induction. More precisely, one proves, for any assignment A and any partial isomorphism I 2 I which is defined on the Avalues for all variables x 1 ; : : : ; x k , that M;A j= OE iff N; I ffi A j= OE: The crucial step in the induction is the quantifier case. Quantified variables are irrelevant to the assignment, so that the relevant partial isomorphism can be restricted to size at most k \Gamma 1, whence a matching choice for the witness can be made on the opposite side. This proves "only if". Next, "if" has a proof analogous to...
A General Framework for Hindley/Milner Type Systems with Constraints
, 2000
"... with constraints. The basic idea is to factor out the common core of previous extensions of the Hindley/Milner system. I present a Hindley/Milner system where the constraint part is a parameter. Speci c applications can be obtained by providing speci c constraint systems which capture the applicat ..."
Abstract

Cited by 30 (8 self)
 Add to MetaCart
with constraints. The basic idea is to factor out the common core of previous extensions of the Hindley/Milner system. I present a Hindley/Milner system where the constraint part is a parameter. Speci c applications can be obtained by providing speci c constraint systems which capture the application in mind. For instance, the Hindley/Milner system can be recovered by instantiating the constraint part to the standard Herbrand constraint system. Type system instances of the general framework are sound if the underlying constraint system is sound. Furthermore, I give a generic type inference algorithm for the general framework, under sucient conditions on the speci c constraint system type inference yields principal types.
Peirce Algebras
, 1992
"... We present a twosorted algebra, called a Peirce algebra, of relations and sets interacting with each other. In a Peirce algebra, sets can combine with each other as in a Boolean algebra, relations can combine with each other as in a relation algebra, and in addition we have both a relationforming o ..."
Abstract

Cited by 25 (10 self)
 Add to MetaCart
We present a twosorted algebra, called a Peirce algebra, of relations and sets interacting with each other. In a Peirce algebra, sets can combine with each other as in a Boolean algebra, relations can combine with each other as in a relation algebra, and in addition we have both a relationforming operator on sets (the Peirce product of Boolean modules) and a setforming operator on relations (a cylindrification operation). Two applications of Peirce algebras are given. The first points out that Peirce algebras provide a natural algebraic framework for modelling certain programming constructs. The second shows that the socalled terminological logics arising in knowledge representation have evolved a semantics best described as a calculus of relations interacting with sets.