Results 1  10
of
149
A general approximation technique for constrained forest problems
 SIAM J. COMPUT.
, 1995
"... We present a general approximation technique for a large class of graph problems. Our technique mostly applies to problems of covering, at minimum cost, the vertices of a graph with trees, cycles, or paths satisfying certain requirements. In particular, many basic combinatorial optimization proble ..."
Abstract

Cited by 423 (21 self)
 Add to MetaCart
We present a general approximation technique for a large class of graph problems. Our technique mostly applies to problems of covering, at minimum cost, the vertices of a graph with trees, cycles, or paths satisfying certain requirements. In particular, many basic combinatorial optimization problems fit in this framework, including the shortest path, minimumcost spanning tree, minimumweight perfect matching, traveling salesman, and Steiner tree problems. Our technique produces approximation algorithms that run in O(n log n) time and come within a factor of 2 of optimal for most of these problems. For instance, we obtain a 2approximation algorithm for the minimumweight perfect matching problem under the triangle inequality. Our running time of O(n log n) time compares favorably with the best strongly polynomial exact algorithms running in O(n 3) time for dense graphs. A similar result is obtained for the 2matching problem and its variants. We also derive the first approximation algorithms for many NPcomplete problems, including the nonfixed pointtopoint connection problem, the exact path partitioning problem, and complex locationdesign problems. Moreover, for the prizecollecting traveling salesman or Steiner tree problems, we obtain 2approximation algorithms, therefore improving the previously bestknown performance guarantees of 2.5 and 3, respectively [Math. Programming, 59 (1993), pp. 413420].
Geometric Shortest Paths and Network Optimization
 Handbook of Computational Geometry
, 1998
"... Introduction A natural and wellstudied problem in algorithmic graph theory and network optimization is that of computing a "shortest path" between two nodes, s and t, in a graph whose edges have "weights" associated with them, and we consider the "length" of a path to ..."
Abstract

Cited by 196 (15 self)
 Add to MetaCart
(Show Context)
Introduction A natural and wellstudied problem in algorithmic graph theory and network optimization is that of computing a "shortest path" between two nodes, s and t, in a graph whose edges have "weights" associated with them, and we consider the "length" of a path to be the sum of the weights of the edges that comprise it. Efficient algorithms are well known for this problem, as briefly summarized below. The shortest path problem takes on a new dimension when considered in a geometric domain. In contrast to graphs, where the encoding of edges is explicit, a geometric instance of a shortest path problem is usually specified by giving geometric objects that implicitly encode the graph and its edge weights. Our goal in devising efficient geometric algorithms is generally to avoid explicit construction of the entire underlying graph, since the full induced graph may be very large (even exponential in the input size, or infinite). Computing an optimal
THE PRIMALDUAL METHOD FOR APPROXIMATION ALGORITHMS AND ITS APPLICATION TO NETWORK DESIGN PROBLEMS
"... The primaldual method is a standard tool in the design of algorithms for combinatorial optimization problems. This chapter shows how the primaldual method can be modified to provide good approximation algorithms for a wide variety of NPhard problems. We concentrate on results from recent researc ..."
Abstract

Cited by 143 (5 self)
 Add to MetaCart
The primaldual method is a standard tool in the design of algorithms for combinatorial optimization problems. This chapter shows how the primaldual method can be modified to provide good approximation algorithms for a wide variety of NPhard problems. We concentrate on results from recent research applying the primaldual method to problems in network design.
BuyatBulk Network Design
"... Theessenceofthesimplestbuyatbulknetwork designproblemisbuyingnetworkcapacity"wholesale"toguaranteeconnectivityfromallnetwork nodestoacertaincentralnetworkswitch.Capacityissoldwith"volumediscount":themorecapacityisbought,thecheaperisthepriceperunit ofbandwidth.WeprovideO(log2n)r ..."
Abstract

Cited by 107 (0 self)
 Add to MetaCart
(Show Context)
Theessenceofthesimplestbuyatbulknetwork designproblemisbuyingnetworkcapacity"wholesale"toguaranteeconnectivityfromallnetwork nodestoacertaincentralnetworkswitch.Capacityissoldwith"volumediscount":themorecapacityisbought,thecheaperisthepriceperunit ofbandwidth.WeprovideO(log2n)randomized approximationalgorithmfortheproblem.This solvestheopenproblemin[15].Theonlypreviouslyknownsolutionswererestrictedtospecial cases(Euclideangraphs)[15]. Wesolveadditionalnaturalvariationsofthe problem,suchasmultisinknetworkdesign,as wellasselectivenetworkdesign.Theseproblems canbeviewedasgeneralizationsofthetheGeneralizedSteinerConnectivityandPrizecollecting salesman(KMST)problems. Intheselectivenetworkdesignproblem,some subsetofkwellsmustbeconnectedtothe(single) renery,sothatthetotalcostisminimized.
The Prize Collecting Steiner Tree Problem
 In Proceedings of the 11th Annual ACMSIAM Symposium on Discrete Algorithms
, 1998
"... This work is motivated by an application in local access network design that can be modeled using the NPhard Prize Collecting Steiner Tree problem. We consider several variants on this problem and on the primaldual 2approximation algorithm devised for it by Goemans and Williamson. We develop seve ..."
Abstract

Cited by 103 (1 self)
 Add to MetaCart
This work is motivated by an application in local access network design that can be modeled using the NPhard Prize Collecting Steiner Tree problem. We consider several variants on this problem and on the primaldual 2approximation algorithm devised for it by Goemans and Williamson. We develop several modifications to the algorithm which lead to theoretical as well as practical improvements in the performance of the algorithm for the original problem. We also demonstrate how already existing algorithms can be extended to solve the bicriteria variants of the problem with constant factor approximation guarantees. Our work leads to practical heuristics applicable in network design.
A note on the prize collecting traveling salesman problem
, 1993
"... We study the version of the prize collecting traveling salesman problem, where the objective is to find a tour that visits a subset of vertices such that the length of the tour plus the sum of penalties associated with vertices not in the tour is as small as possible. We present an approximation alg ..."
Abstract

Cited by 89 (5 self)
 Add to MetaCart
We study the version of the prize collecting traveling salesman problem, where the objective is to find a tour that visits a subset of vertices such that the length of the tour plus the sum of penalties associated with vertices not in the tour is as small as possible. We present an approximation algorithm with constant bound. The algorithm is based on Christofides' algorithm for the traveling salesman problem as well as a method to round fractional solutions of a linear programming relaxation to integers, feasible for the original problem.
Approximation Algorithms for Orienteering and DiscountedReward TSP
, 2003
"... In this paper, we give the first constantfactor approximation algorithm for the rooted Orienteering problem, as well as a new problem that we call the DiscountedReward TSP, motivated by robot navigation. In both problems, we are given a graph with lengths on edges and prizes (rewards) on nodes, ..."
Abstract

Cited by 82 (1 self)
 Add to MetaCart
In this paper, we give the first constantfactor approximation algorithm for the rooted Orienteering problem, as well as a new problem that we call the DiscountedReward TSP, motivated by robot navigation. In both problems, we are given a graph with lengths on edges and prizes (rewards) on nodes, and a start node s. In the Orienteering Problem, the goal is to find a path that maximizes the reward collected, subject to a hard limit on the total length of the path. In the DiscountedReward TSP, instead of a length limit we are given a discount factor fl, and the goal is to maximize total discounted reward collected, where reward for a node reached at time t is discounted by fl . This is similar to the objective considered in Markov Decision Processes (MDPs) except we only receive a reward the first time a node is visited. We also consider tree and multiplepath variants of these problems and provide approximations for those as well. Although the unrooted orienteering problem, where there is no fixed start node s, has been known to be approximable using algorithms for related problems such as kTSP (in which the amount of reward to be collected is fixed and the total length is approximately minimized), ours is the first to approximate the rooted question, solving an open problem of [3, 1].
A BranchandCut Algorithm for the Symmetric Generalized Travelling Salesman Problem
, 1995
"... We consider a variant of the classical symmetric Travelling Salesman Problem in which the nodes are partitioned into clusters and the salesman has to visit at least one node for each cluster. This NPhard problem is known in the literature as the symmetric Generalized Travelling Salesman Problem (GT ..."
Abstract

Cited by 75 (4 self)
 Add to MetaCart
We consider a variant of the classical symmetric Travelling Salesman Problem in which the nodes are partitioned into clusters and the salesman has to visit at least one node for each cluster. This NPhard problem is known in the literature as the symmetric Generalized Travelling Salesman Problem (GTSP), and finds practical applications in routing, scheduling and locationrouting. In a companion paper [5] we modeled GTSP as an integer linear program, and studied the facial structure of two polytopes associated with the problem. Here we propose exact and heuristic separation procedures for some classes of facetdefining inequalities, which are used within a branchandcut algorithm for the exact solution of GTSP. Heuristic procedures are also described. Extensive computational results for instances taken from the literature and involving up to 442 nodes are reported.
Traveling Salesman Problems With Profits: An Overview
 Transportation Science
, 2001
"... Traveling Salesman Problems with Profits (TSPs with Profits) are a generalization of the Traveling Salesman Problem (TSP) where it is not necessary to visit all vertices. With each vertex is associated a profit. The objective is to find a route with a satisfying collected profit (maximized) and trav ..."
Abstract

Cited by 74 (2 self)
 Add to MetaCart
Traveling Salesman Problems with Profits (TSPs with Profits) are a generalization of the Traveling Salesman Problem (TSP) where it is not necessary to visit all vertices. With each vertex is associated a profit. The objective is to find a route with a satisfying collected profit (maximized) and travel cost (minimized). Applications of these problems arise in contexts such as traveling salesman problems, job scheduling or carrier transportation. In this paper, the existing literature about TSPs with Profits is surveyed.
A constantfactor approximation algorithm for the kMST problem
 In Proc. of ACM symposium on Theory of computing (STOC ’96
, 1996
"... In the Euclidean TSP with neighborhoods (TSPN) problem we seek a shortest tour that visits a given set of n neighborhoods. The Euclidean TSPN generalizes the standard TSP on points. We present the first constantfactor approximation algorithm for TSPN on an arbitrary set of disjoint, connected neigh ..."
Abstract

Cited by 62 (5 self)
 Add to MetaCart
In the Euclidean TSP with neighborhoods (TSPN) problem we seek a shortest tour that visits a given set of n neighborhoods. The Euclidean TSPN generalizes the standard TSP on points. We present the first constantfactor approximation algorithm for TSPN on an arbitrary set of disjoint, connected neighborhoods in the plane. Prior approximation bounds were O(log n), except in special cases. Our approximation algorithm applies to arbitrary connected neighborhoods of any size or shape. 1