Results 11 
15 of
15
Weak βηnormalization and normalization by evaluation for System F
 In LPAR’08, volume 5330 of LNAI
, 2008
"... Abstract. A general version of the fundamental theorem for System F is presented which can be instantiated to obtain proofs of weak β and βηnormalization and normalization by evaluation. 1 Introduction and Related Work Dependently typed lambdacalculi have been successfully used as proof languages ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
Abstract. A general version of the fundamental theorem for System F is presented which can be instantiated to obtain proofs of weak β and βηnormalization and normalization by evaluation. 1 Introduction and Related Work Dependently typed lambdacalculi have been successfully used as proof languages in proof assistants like Agda [Nor07], Coq [INR07], LEGO [Pol94], and NuPrl [Ct86]. Since types may depend on values in these type theories, checking equality of types, which is crucial for type and, thus, proof checking, is nontrivial for these
A Partial Type Checking Algorithm for Type: Type
, 2008
"... We analyze a partial type checking algorithm for the inconsistent domainfree pure type system Type:Type(**). We show that the algorithm is sound and partially complete using a coinductive specification of algorithmic equality. This entails that the algorithm will only diverge due to the presence of ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
We analyze a partial type checking algorithm for the inconsistent domainfree pure type system Type:Type(**). We show that the algorithm is sound and partially complete using a coinductive specification of algorithmic equality. This entails that the algorithm will only diverge due to the presence of divergingcomputations, in particular it will terminate for all typeable terms.
Comparing HigherOrder Encodings in Logical Frameworks and Tile Logic
, 2001
"... In recent years, logical frameworks and tile logic have been separately proposed by our research groups, respectively in Udine and in Pisa, as suitable metalanguages with higherorder features for encoding and studying nominal calculi. This paper discusses the main features of the two approaches, tr ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
In recent years, logical frameworks and tile logic have been separately proposed by our research groups, respectively in Udine and in Pisa, as suitable metalanguages with higherorder features for encoding and studying nominal calculi. This paper discusses the main features of the two approaches, tracing di#erences and analogies on the basis of two case studies: late #calculus and lazy simply typed #calculus.
Impredicative Representations of Categorical Datatypes
, 1994
"... this document that certain implications are not based on a well stated formal theory but require a certain amount of handwaving. ..."
Abstract
 Add to MetaCart
this document that certain implications are not based on a well stated formal theory but require a certain amount of handwaving.
Type Structures and Normalization by Evaluation for System F ω
"... We present the first verified normalizationbyevaluation algorithm for System F ω, the simplest impredicative type theory with computation on the type level. Types appear in three shapes: As syntactical types, as type values which direct the reification process, and as semantical types, i.e., sets ..."
Abstract
 Add to MetaCart
We present the first verified normalizationbyevaluation algorithm for System F ω, the simplest impredicative type theory with computation on the type level. Types appear in three shapes: As syntactical types, as type values which direct the reification process, and as semantical types, i.e., sets of total values. The three shapes are captured by the new concept of a type structure, and the fundamental theorem now states that an induced structure is a type substructure. This work is an attempt at an algebraic treatment of type theory based on typed applicative structures rather than categories. 1