Results 1 
2 of
2
Characterizing Ideal Weighted Threshold Secret Sharing
 Second Theory of Cryptography Conference, TCC 2005. Lecture Notes in Comput. Sci. 3378
, 2005
"... Abstract. Weighted threshold secret sharing was introduced by Shamir in his seminal work on secret sharing. In such settings, there is a set of users where each user is assigned a positive weight. A dealer wishes to distribute a secret among those users so that a subset of users may reconstruct the ..."
Abstract

Cited by 17 (5 self)
 Add to MetaCart
Abstract. Weighted threshold secret sharing was introduced by Shamir in his seminal work on secret sharing. In such settings, there is a set of users where each user is assigned a positive weight. A dealer wishes to distribute a secret among those users so that a subset of users may reconstruct the secret if and only if the sum of weights of its users exceeds a certain threshold. On one hand, there are nontrivial weighted threshold access structures that have an ideal scheme – a scheme in which the size of the domain of shares of each user is the same as the size of the domain of possible secrets (this is the smallest possible size for the domain of shares). On the other hand, other weighted threshold access structures are not ideal. In this work we characterize all weighted threshold access structures that are ideal. We show that a weighted threshold access structure is ideal if and only if it is a hierarchical threshold access structure (as introduced by Simmons), or a tripartite access structure (these structures generalize the concept of bipartite access structures due to Padró and Sáez), or a composition of two ideal weighted threshold access structures that are defined on smaller sets of users. We further show that in all those cases the weighted threshold access structure may be realized by a linear ideal secret sharing scheme. The proof of our characterization relies heavily on the strong connection between ideal secret sharing schemes and matroids, as proved by Brickell and Davenport.
Monotone Circuits for Monotone Weighted Threshold Functions ∗
"... Weighted threshold functions with positive weights are a natural generalization of unweighted threshold functions. These functions are clearly monotone. However, the naive way of computing them is adding the weights of the satisfied variables and checking if the sum is greater than the threshold; th ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
Weighted threshold functions with positive weights are a natural generalization of unweighted threshold functions. These functions are clearly monotone. However, the naive way of computing them is adding the weights of the satisfied variables and checking if the sum is greater than the threshold; this algorithm is inherently nonmonotone since addition is a nonmonotone function. In this work we bypass this addition step and construct a polynomial size logarithmic depth unbounded fanin monotone circuit for every weighted threshold function, i.e., we show that weighted threshold functions are in mAC 1. (To the best of our knowledge, prior to our work no polynomial monotone circuits were known for weighted threshold functions.) Our monotone circuits are applicable for the cryptographic tool of secret sharing schemes. Using general results for compiling monotone circuits (Yao, 1989) and monotone formulae (Benaloh and Leichter, 1990) into secret sharing schemes, we get secret sharing schemes for every weighted threshold access structure. Specifically, we get: (1) informationtheoretic secret sharing schemes where the size of each share is quasipolynomial in the number of users, and (2) computational secret sharing schemes where the size of each share is polynomial in the number of users.