Results 1  10
of
861
IdentityBased Encryption from the Weil Pairing
, 2001
"... We propose a fully functional identitybased encryption scheme (IBE). The scheme has chosen ciphertext security in the random oracle model assuming an elliptic curve variant of the computational DiffieHellman problem. Our system is based on bilinear maps between groups. The Weil pairing on elliptic ..."
Abstract

Cited by 1166 (24 self)
 Add to MetaCart
We propose a fully functional identitybased encryption scheme (IBE). The scheme has chosen ciphertext security in the random oracle model assuming an elliptic curve variant of the computational DiffieHellman problem. Our system is based on bilinear maps between groups. The Weil pairing on elliptic curves is an example of such a map. We give precise definitions for secure identity based encryption schemes and give several applications for such systems.
Efficient algorithms for pairingbased cryptosystems
, 2002
"... Abstract. We describe fast new algorithms to implement recent cryptosystems based on the Tate pairing. In particular, our techniques improve pairing evaluation speed by a factor of about 55 compared to previously known methods in characteristic 3, and attain performance comparable to that of RSA in ..."
Abstract

Cited by 299 (23 self)
 Add to MetaCart
Abstract. We describe fast new algorithms to implement recent cryptosystems based on the Tate pairing. In particular, our techniques improve pairing evaluation speed by a factor of about 55 compared to previously known methods in characteristic 3, and attain performance comparable to that of RSA in larger characteristics. We also propose faster algorithms for scalar multiplication in characteristic 3 and square root extraction over Fpm, the latter technique being also useful in contexts other than that of pairingbased cryptography. 1
Signature schemes and anonymous credentials from bilinear maps
, 2004
"... We propose a new and efficient signature scheme that is provably secure in the plain model. The security of our scheme is based on a discretelogarithmbased assumption put forth by Lysyanskaya, Rivest, Sahai, and Wolf (LRSW) who also showed that it holds for generic groups and is independent of th ..."
Abstract

Cited by 187 (24 self)
 Add to MetaCart
We propose a new and efficient signature scheme that is provably secure in the plain model. The security of our scheme is based on a discretelogarithmbased assumption put forth by Lysyanskaya, Rivest, Sahai, and Wolf (LRSW) who also showed that it holds for generic groups and is independent of the decisional DiffieHellman assumption. We prove security of our scheme under the LRSW assumption for groups with bilinear maps. We then show how our scheme can be used to construct efficient anonymous credential systems as well as group signature and identity escrow schemes. To this end, we provide efficient protocols that allow one to prove in zeroknowledge the knowledge of a signature on a committed (or encrypted) message and to obtain a signature on a committed message.
Efficient Identity Based Signature Schemes Based on Pairings
 SAC 2002, LNCS 2595
, 2002
"... We develop an efficient identity based signature scheme based on pairings whose security relies on the hardness of the DiffieHellman problem in the random oracle model. We describe how this scheme is obtained as a special version of a more general generic scheme which yields further new provably se ..."
Abstract

Cited by 141 (2 self)
 Add to MetaCart
We develop an efficient identity based signature scheme based on pairings whose security relies on the hardness of the DiffieHellman problem in the random oracle model. We describe how this scheme is obtained as a special version of a more general generic scheme which yields further new provably secure identity based signature schemes if pairings are used. The generic scheme also includes traditional public key signature schemes. We further discuss issues of key escrow and the distribution of keys to multiple trust authorities. The appendix contains a brief description of the relevant properties of supersingular elliptic curves and the Weil and Tate pairings.
Zeroes of Zeta Functions and Symmetry
, 1999
"... Hilbert and Polya suggested that there might be a natural spectral interpretation of the zeroes of the Riemann Zeta function. While at the time there was little evidence for this, today the evidence is quite convincing. Firstly, there are the “function field” analogues, that is zeta functions of cur ..."
Abstract

Cited by 103 (2 self)
 Add to MetaCart
Hilbert and Polya suggested that there might be a natural spectral interpretation of the zeroes of the Riemann Zeta function. While at the time there was little evidence for this, today the evidence is quite convincing. Firstly, there are the “function field” analogues, that is zeta functions of curves over finite fields and their generalizations. For these a spectral interpretation for their zeroes exists in terms of eigenvalues of Frobenius on cohomology. Secondly, the developments, both theoretical and numerical, on the local spacing distributions between the high zeroes of the zeta function and its generalizations give striking evidence for such a spectral connection. Moreover, the lowlying zeroes of various families of zeta functions follow laws for the eigenvalue distributions of members of the classical groups. In this paper we review these developments. In order to present the material fluently, we do not proceed in chronological order of discovery. Also, in concentrating entirely on the subject matter of the title, we are ignoring the standard body of important work that has been done on the zeta function and Lfunctions.
The Eta Pairing Revisited
 IEEE Transactions on Information Theory
, 2006
"... Abstract. In this paper we simplify and extend the Eta pairing, originally discovered in the setting of supersingular curves by Barreto et al., to ordinary curves. Furthermore, we show that by swapping the arguments of the Eta pairing, one obtains a very efficient algorithm resulting in a speedup o ..."
Abstract

Cited by 91 (8 self)
 Add to MetaCart
Abstract. In this paper we simplify and extend the Eta pairing, originally discovered in the setting of supersingular curves by Barreto et al., to ordinary curves. Furthermore, we show that by swapping the arguments of the Eta pairing, one obtains a very efficient algorithm resulting in a speedup of a factor of around six over the usual Tate pairing, in the case of curves which have large security parameters, complex multiplication by an order of Q ( √ −3), and when the trace of Frobenius is chosen to be suitably small. Other, more minor savings are obtained for 1 2 more general curves. 1
Supersingular curves in cryptography
, 2001
"... Frey and Rück gave a method to map the discrete logarithm problem in the divisor class group of a curve over ¢¡ into a finite field discrete logarithm problem in some extension. The discrete logarithm problem in the divisor class group can therefore be solved as long ¥ as is small. In the elliptic ..."
Abstract

Cited by 89 (8 self)
 Add to MetaCart
Frey and Rück gave a method to map the discrete logarithm problem in the divisor class group of a curve over ¢¡ into a finite field discrete logarithm problem in some extension. The discrete logarithm problem in the divisor class group can therefore be solved as long ¥ as is small. In the elliptic curve case it is known that for supersingular curves one ¥§¦© ¨ has. In this paper curves of higher genus are studied. Bounds on the possible values ¥ for in the case of supersingular curves are given. Ways to ensure that a curve is not supersingular are also given. 1.
The Discrete Logarithm Problem On Elliptic Curves Of Trace One
 Journal of Cryptology
, 1999
"... In this short note we describe an elementary technique which leads to a linear algorithm for solving the discrete logarithm problem on elliptic curves of trace one. In practice the method described means that when choosing elliptic curves to use in cryptography one has to eliminate all curves who ..."
Abstract

Cited by 85 (2 self)
 Add to MetaCart
In this short note we describe an elementary technique which leads to a linear algorithm for solving the discrete logarithm problem on elliptic curves of trace one. In practice the method described means that when choosing elliptic curves to use in cryptography one has to eliminate all curves whose group orders are equal to the order of the finite field.
Efficient arithmetic on Koblitz curves
 Designs, Codes, and Cryptography
, 2000
"... Abstract. It has become increasingly common to implement discretelogarithm based publickey protocols on elliptic curves over finite fields. The basic operation is scalar multiplication: taking a given integer multiple of a given point on the curve. The cost of the protocols depends on that of the ..."
Abstract

Cited by 81 (0 self)
 Add to MetaCart
Abstract. It has become increasingly common to implement discretelogarithm based publickey protocols on elliptic curves over finite fields. The basic operation is scalar multiplication: taking a given integer multiple of a given point on the curve. The cost of the protocols depends on that of the elliptic scalar multiplication operation. Koblitz introduced a family of curves which admit especially fast elliptic scalar multiplication. His algorithm was later modified by Meier and Staffelbach. We give an improved version of the algorithm which runs 50 % faster than any previous version. It is based on a new kind of representation of an integer, analogous to certain kinds of binary expansions. We also outline further speedups using precomputation and storage.
Evidence that XTR is more secure than supersingular elliptic curve cryptosystems
 J. Cryptology
, 2001
"... Abstract. We show that finding an efficiently computable injective homomorphism from the XTR subgroup into the group of points over GF(p 2) of a particular type of supersingular elliptic curve is at least as hard as solving the DiffieHellman problem in the XTR subgroup. This provides strong evidenc ..."
Abstract

Cited by 78 (4 self)
 Add to MetaCart
Abstract. We show that finding an efficiently computable injective homomorphism from the XTR subgroup into the group of points over GF(p 2) of a particular type of supersingular elliptic curve is at least as hard as solving the DiffieHellman problem in the XTR subgroup. This provides strong evidence for a negative answer to the question posed by S. Vanstone and A. Menezes at the Crypto 2000 Rump Session on the possibility of efficiently inverting the MOV embedding into the XTR subgroup. As a side result we show that the Decision DiffieHellman problem in the group of points on this type of supersingular elliptic curves is efficiently computable, which provides an example of a group where the Decision DiffieHellman problem is simple, while the DiffieHellman and discrete logarithm problem are presumably not. The cryptanalytical tools we use also lead to cryptographic applications of independent interest. These applications are an improvement of Joux’s one round protocol for tripartite DiffieHellman key exchange and a non refutable digital signature scheme that supports escrowable encryption. We also discuss the applicability of our methods to general elliptic curves defined over finite fields. 1