Results 1  10
of
15
ANCESTRAL GRAPH MARKOV MODELS
, 2002
"... This paper introduces a class of graphical independence models that is closed under marginalization and conditioning but that contains all DAG independence models. This class of graphs, called maximal ancestral graphs, has two attractive features: there is at most one edge between each pair of verti ..."
Abstract

Cited by 76 (18 self)
 Add to MetaCart
This paper introduces a class of graphical independence models that is closed under marginalization and conditioning but that contains all DAG independence models. This class of graphs, called maximal ancestral graphs, has two attractive features: there is at most one edge between each pair of vertices; every missing edge corresponds to an independence relation. These features lead to a simple parameterization of the corresponding set of distributions in the Gaussian case.
Algebraic Geometry of Bayesian Networks
 Journal of Symbolic Computation
, 2005
"... We study the algebraic varieties defined by the conditional independence statements of Bayesian networks. A complete algebraic classification is given for Bayesian networks on at most five random variables. Hidden variables are related to the geometry of higher secant varieties. 1 ..."
Abstract

Cited by 57 (5 self)
 Add to MetaCart
We study the algebraic varieties defined by the conditional independence statements of Bayesian networks. A complete algebraic classification is given for Bayesian networks on at most five random variables. Hidden variables are related to the geometry of higher secant varieties. 1
Stratified exponential families: Graphical models and model selection
 Annals of Statistics
, 2001
"... JSTOR is a notforprofit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JS ..."
Abstract

Cited by 54 (6 self)
 Add to MetaCart
JSTOR is a notforprofit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.
Asymptotic Model Selection for Naive Bayesian Networks
 In Proc. of the 18th Conference on Uncertainty in Artificial Intelligence (UAI02
, 2002
"... We develop a closed form asymptotic formula to compute the marginal likelihood of data given a naive Bayesian network model with two hidden states and binary features. ..."
Abstract

Cited by 30 (3 self)
 Add to MetaCart
We develop a closed form asymptotic formula to compute the marginal likelihood of data given a naive Bayesian network model with two hidden states and binary features.
Dimension Correction for Hierarchical Latent Class Models
, 2002
"... Model complexity is an important factor to consider when selecting among graphical models. When all variables are observed, the complexity of a model can be measured by its standard dimension, i.e. the number of independent parameters. When hidden variables are present, however, standard dime ..."
Abstract

Cited by 15 (5 self)
 Add to MetaCart
Model complexity is an important factor to consider when selecting among graphical models. When all variables are observed, the complexity of a model can be measured by its standard dimension, i.e. the number of independent parameters. When hidden variables are present, however, standard dimension might no longer be appropriate.
Population Markov Chain Monte Carlo
 Machine Learning
, 2003
"... Stochastic search algorithms inspired by physical and biological systems are applied to the problem of learning directed graphical probability models in the presence of missing observations and hidden variables. For this class of problems, deterministic search algorithms tend to halt at local optima ..."
Abstract

Cited by 12 (2 self)
 Add to MetaCart
Stochastic search algorithms inspired by physical and biological systems are applied to the problem of learning directed graphical probability models in the presence of missing observations and hidden variables. For this class of problems, deterministic search algorithms tend to halt at local optima, requiring random restarts to obtain solutions of acceptable quality. We compare three stochastic search algorithms: a MetropolisHastings Sampler (MHS), an Evolutionary Algorithm (EA), and a new hybrid algorithm called Population Markov Chain Monte Carlo, or popMCMC. PopMCMC uses statistical information from a population of MHSs to inform the proposal distributions for individual samplers in the population. Experimental results show that popMCMC and EAs learn more efficiently than the MHS with no information exchange. Populations of MCMC samplers exhibit more diversity than populations evolving according to EAs not satisfying physicsinspired local reversibility conditions. KEY WORDS: Markov Chain Monte Carlo, MetropolisHastings Algorithm, Graphical Probabilistic Models, Bayesian Networks, Bayesian Learning, Evolutionary Algorithms Machine Learning MCMC Issue 1 5/16/01 1.
Maximum likelihood estimation in latent class models for contingency table data
 In Algebraic and Geometric Methods in Statistics
, 2008
"... 1 page 1 ..."
Effective Dimensions of Hierarchical Latent Class Models
 Journal of Artificial Intelligence Research
, 2002
"... Hierarchical latent class (HLC) models are treestructured Bayesian networks where leaf nodes are observed while internal nodes are latent. There are no theoretically well justified model selection criteria for HLC models in particular and Bayesian networks with latent nodes in general. Nonetheless, ..."
Abstract

Cited by 5 (2 self)
 Add to MetaCart
Hierarchical latent class (HLC) models are treestructured Bayesian networks where leaf nodes are observed while internal nodes are latent. There are no theoretically well justified model selection criteria for HLC models in particular and Bayesian networks with latent nodes in general. Nonetheless, empirical studies suggest that the BIC score is a reasonable criterion to use in practice for learning HLC models. Empirical studies also suggest that sometimes model selection can be improved if standard model dimension is replaced with effective model dimension in the penalty term of the BIC score.
THE CAUSAL MANIPULATION AND BAYESIAN ESTIMATION OF CHAIN EVENT GRAPHS
 SUBMITTED TO THE ANNALS OF STATISTICS
, 2005
"... Discrete Bayesian Networks (BNs) have been very successful as a framework both for inference and for expressing certain causal hypotheses. In this paper we present a class of graphical models called the chain event graph (CEG) models, that generalises the class of discrete BN models. This class is s ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
Discrete Bayesian Networks (BNs) have been very successful as a framework both for inference and for expressing certain causal hypotheses. In this paper we present a class of graphical models called the chain event graph (CEG) models, that generalises the class of discrete BN models. This class is suited for representing conditional independence and sample space structures of asymmetric models. It retains many useful properties of discrete BNs, in particular admitting conjugate estimation. It provides a flexible and expressive framework for representing and analysing the implications of causal hypotheses, expressed in terms of the effects of a manipulation of the generating underlying system. We prove that, as for a BN, identifiability analyses of causal effects can be performed through examining the topology of the CEG graph, leading to theorems analogous to the Backdoor theorem for the BN.