Results 1  10
of
18
Complexity and Algorithms for Reasoning About Time: A GraphTheoretic Approach
, 1992
"... Temporal events are regarded here as intervals on a time line. This paper deals with problems in reasoning about such intervals when the precise topological relationship between them is unknown or only partially specified. This work unifies notions of interval algebras in artificial intelligence ..."
Abstract

Cited by 86 (11 self)
 Add to MetaCart
Temporal events are regarded here as intervals on a time line. This paper deals with problems in reasoning about such intervals when the precise topological relationship between them is unknown or only partially specified. This work unifies notions of interval algebras in artificial intelligence with those of interval orders and interval graphs in combinatorics. The satisfiability, minimal labeling, all solutions and all realizations problems are considered for temporal (interval) data. Several versions are investigated by restricting the possible interval relationships yielding different complexity results. We show that even when the temporal data comprises of subsets of relations based on intersection and precedence only, the satisfiability question is NPcomplete. On the positive side, we give efficient algorithms for several restrictions of the problem. In the process, the interval graph sandwich problem is introduced, and is shown to be NPcomplete. This problem is als...
Four Strikes against Physical Mapping of DNA
 JOURNAL OF COMPUTATIONAL BIOLOGY
, 1993
"... Physical Mapping is a central problem in molecular biology ... and the human genome project. The problem is to reconstruct the relative position of fragments of DNA along the genome from information on their pairwise overlaps. We show that four simplified models of the problem lead to NPcomplete ..."
Abstract

Cited by 55 (8 self)
 Add to MetaCart
Physical Mapping is a central problem in molecular biology ... and the human genome project. The problem is to reconstruct the relative position of fragments of DNA along the genome from information on their pairwise overlaps. We show that four simplified models of the problem lead to NPcomplete decision problems: Colored unit interval graph completion, the maximum interval (or unit interval) subgraph, the pathwidth of a bipartite graph, and the kconsecutive ones problem for k >= 2. These models have been chosen to reflect various features typical in biological data, including false negative and positive errors, small width of the map and chimericism.
Graph Sandwich Problems
, 1994
"... The graph sandwich problem for property \Pi is defined as follows: Given two graphs G ) such that E ` E , is there a graph G = (V; E) such that E which satisfies property \Pi? Such problems generalize recognition problems and arise in various applications. Concentrating mainly o ..."
Abstract

Cited by 49 (8 self)
 Add to MetaCart
The graph sandwich problem for property \Pi is defined as follows: Given two graphs G ) such that E ` E , is there a graph G = (V; E) such that E which satisfies property \Pi? Such problems generalize recognition problems and arise in various applications. Concentrating mainly on properties characterizing subfamilies of perfect graphs, we give polynomial algorithms for several properties and prove the NPcompleteness of others. We describe
Tractability of Parameterized Completion Problems on Chordal, Strongly Chordal and Proper Interval Graphs
, 1994
"... We study the parameterized complexity of three NPhard graph completion problems. The MINIMUM FILLIN problem is to decide if a graph can be triangulated by adding at most k edges. We develop O(c m) and O(k mn + f(k)) algorithms for this problem on a graph with n vertices and m edges. Here f(k ..."
Abstract

Cited by 40 (5 self)
 Add to MetaCart
We study the parameterized complexity of three NPhard graph completion problems. The MINIMUM FILLIN problem is to decide if a graph can be triangulated by adding at most k edges. We develop O(c m) and O(k mn + f(k)) algorithms for this problem on a graph with n vertices and m edges. Here f(k) is exponential in k and the constants hidden by the bigO notation are small and do not depend on k. In particular, this implies that the problem is fixedparameter tractable (FPT). The PROPER
On the Complexity of DNA Physical Mapping
, 1994
"... The Physical Mapping Problem is to reconstruct the relative position of fragments (clones) of DNA along the genome from information on their pairwise overlaps. We show that two simplified versions of the problem belong to the class of NPcomplete problems, which are conjectured to be computationa ..."
Abstract

Cited by 39 (7 self)
 Add to MetaCart
The Physical Mapping Problem is to reconstruct the relative position of fragments (clones) of DNA along the genome from information on their pairwise overlaps. We show that two simplified versions of the problem belong to the class of NPcomplete problems, which are conjectured to be computationally intractable. In one version all clones have equal length, and in another, clone lengths may be arbitrary. The proof uses tools from graph theory and complexity.
Pathwidth, Bandwidth and Completion Problems to Proper Interval Graphs with Small Cliques
 SIAM Journal on Computing
, 1996
"... We study two related problems motivated by molecular biology: ffl Given a graph G and a constant k, does there exist a supergraph G of G which is a unit interval graph and has clique size at most k? ffl Given a graph G and a proper kcoloring c of G, does there exist a supergraph We show th ..."
Abstract

Cited by 29 (6 self)
 Add to MetaCart
We study two related problems motivated by molecular biology: ffl Given a graph G and a constant k, does there exist a supergraph G of G which is a unit interval graph and has clique size at most k? ffl Given a graph G and a proper kcoloring c of G, does there exist a supergraph We show that those problems are polynomial for fixed k. On the other hand we prove that the first problem is equivalent to deciding if the bandwidth of G is at most k \Gamma 1. Hence, it is NPhard, and W [t]hard for all t. We also show that the second problem is W [1]hard. This implies that for fixed k, both of the problems are unlikely to have an O(n ) algorithm, where ff is a constant independent of k.
A Fully Dynamic Algorithm for Recognizing and Representing Proper Interval Graphs
 SIAM J. COMPUT
, 1999
"... In this paper we study the problem of recognizing and representing dynamically changing proper interval graphs. The input to the problem consists of a series of modifications to be performed on a graph, where a modification can be a deletion or an addition of a vertex or an edge. The objective is to ..."
Abstract

Cited by 22 (1 self)
 Add to MetaCart
In this paper we study the problem of recognizing and representing dynamically changing proper interval graphs. The input to the problem consists of a series of modifications to be performed on a graph, where a modification can be a deletion or an addition of a vertex or an edge. The objective is to maintain a representation of the graph as long as it remains a proper interval graph, and to detect when it ceases to be so. The representation should enable one to efficiently construct a realization of the graph by an inclusionfree family of intervals. This problem has important applications in physical mapping of DNA. We give a nearoptimal fully dynamic algorithm for this problem. It operates in time O(log n) per edge insertion or deletion. We prove a close lower bound of\Omega\Gamma/24 n=(log log n + log b)) amortized time per operation, in the cell probe model with wordsize b. We also construct optimal incremental and decremental algorithms for the problem, which handle each edge operation in O(1) time.
Preference modelling
 State of the Art in Multiple Criteria Decision Analysis
, 2005
"... This paper provides the reader with a presentation of preference modelling fundamental notions as well as some recent results in this field. Preference modelling is an inevitable step in a variety of fields: economy, sociology, psychology, mathematical programming, even medicine, archaeology, and ob ..."
Abstract

Cited by 12 (0 self)
 Add to MetaCart
This paper provides the reader with a presentation of preference modelling fundamental notions as well as some recent results in this field. Preference modelling is an inevitable step in a variety of fields: economy, sociology, psychology, mathematical programming, even medicine, archaeology, and obviously decision analysis. Our notation and some basic definitions, such as those of binary relation, properties and ordered sets, are presented at the beginning of the paper. We start by discussing different reasons for constructing a model or preference. We then go through a number of issues that influence the construction of preference models. Different formalisations besides classical logic such as fuzzy sets and nonclassical logics become necessary. We then present different types of preference structures reflecting the behavior of a decisionmaker: classical, extended and valued ones. It is relevant to have a numerical representation of preferences: functional representations, value functions. The concepts of thresholds and minimal representation are also introduced in this section. In section 7, we briefly explore the concept of deontic logic (logic of preference) and other formalisms associated with "compact representation of preferences " introduced for special purposes. We end the paper with some concluding remarks.
Satisfiability Problems on Intervals and Unit Intervals
 Theoretical Computer Science
, 1997
"... For an interval graph with some additional order constraints between pairs of nonintersecting intervals, we give a linear time algorithm to determine if there exists a realization which respects the order constraints. Previous algorithms for this problem (known also as seriation with side constrain ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
For an interval graph with some additional order constraints between pairs of nonintersecting intervals, we give a linear time algorithm to determine if there exists a realization which respects the order constraints. Previous algorithms for this problem (known also as seriation with side constraints) required quadratic time. This problem contains as subproblems interval graph and interval order recognition. On the other hand, it is a special case of the interval satisfiability problem, which is concerned with the realizability of a set of intervals along a line, subject to precedence and intersection constraints. We study such problems for all possible restrictions on the types of constraints, when all intervals must have the same length. We give efficient algorithms for several restrictions of the problem, and show the NPcompleteness of another restriction. 1 Introduction Two intervals x; y on the real line may either intersect or one of them is completely to the left of the othe...
Bounded Degree Interval Sandwich Problems
 Algorithmica
, 1999
"... The problems of Interval Sandwich (IS) and Intervalizing Colored Graphs (ICG) have received a lot of attention recently, due to their applicability to DNA physical mapping problems with ambiguous data. Most of the results obtained so far on the problems were hardness results. Here we study the probl ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
The problems of Interval Sandwich (IS) and Intervalizing Colored Graphs (ICG) have received a lot of attention recently, due to their applicability to DNA physical mapping problems with ambiguous data. Most of the results obtained so far on the problems were hardness results. Here we study the problems under assumptions of sparseness, which hold in the biological context. We prove that both problems are polynomial when either (1) the input graph degree and the solution graph clique size are bounded, or (2) the solution graph degree is bounded. In particular, this implies that ICG is polynomial on bounded degree graphs for every fixed number of colors, in contrast with the recent result of Bodlaender and de Fluiter.