Results 1 
8 of
8
Hilbert’s twentyfourth problem
 American Mathematical Monthly
, 2001
"... 1. INTRODUCTION. For geometers, Hilbert’s influential work on the foundations of geometry is important. For analysts, Hilbert’s theory of integral equations is just as important. But the address “Mathematische Probleme ” [37] that David Hilbert (1862– 1943) delivered at the second International Cong ..."
Abstract

Cited by 10 (4 self)
 Add to MetaCart
1. INTRODUCTION. For geometers, Hilbert’s influential work on the foundations of geometry is important. For analysts, Hilbert’s theory of integral equations is just as important. But the address “Mathematische Probleme ” [37] that David Hilbert (1862– 1943) delivered at the second International Congress of Mathematicians (ICM) in Paris has tremendous importance for all mathematicians. Moreover, a substantial part of
Between Russell And Hilbert: Behmann On The Foundations Of Mathematics
 Bulletin of Symbolic Logic
, 1999
"... . After giving a brief overview of the renewal of interest in logic and the foundations of mathematics in G ottingen in the period 19141921, I give a detailed presentation of the approach to the foundations of mathematics found in Behmann's doctoral dissertation of 1918, Die Antinomie der transfini ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
. After giving a brief overview of the renewal of interest in logic and the foundations of mathematics in G ottingen in the period 19141921, I give a detailed presentation of the approach to the foundations of mathematics found in Behmann's doctoral dissertation of 1918, Die Antinomie der transfiniten Zahl und ihre Auflosung durch die Theorie von Russell und Whitehead. The dissertation was written under the guidance of David Hilbert and was primarily intended to give a clear exposition of the solution to the antinomies as found in Principia Mathematica. In the process of explaining the theory of Principia, Behmann also presented an original approach to the foundations of mathematics which saw in sense perception of concrete individuals the Archimedean point for a secure foundation of mathematical knowledge. The last part of the paper points out an important numbers of connections between Behmann's work and Hilbert's foundational thought. 1. Logic and Foundations of Mathematics in G ...
The Practice of Finitism: Epsilon Calculus and Consistency Proofs in Hilbert's Program
, 2001
"... . After a brief flirtation with logicism in 19171920, David Hilbert proposed his own program in the foundations of mathematics in 1920 and developed it, in concert with collaborators such as Paul Bernays and Wilhelm Ackermann, throughout the 1920s. The two technical pillars of the project were the ..."
Abstract

Cited by 5 (3 self)
 Add to MetaCart
. After a brief flirtation with logicism in 19171920, David Hilbert proposed his own program in the foundations of mathematics in 1920 and developed it, in concert with collaborators such as Paul Bernays and Wilhelm Ackermann, throughout the 1920s. The two technical pillars of the project were the development of axiomatic systems for ever stronger and more comprehensive areas of mathematics and finitistic proofs of consistency of these systems. Early advances in these areas were made by Hilbert (and Bernays) in a series of lecture courses at the University of Gttingen between 1917 and 1923, and notably in Ackermann 's dissertation of 1924. The main innovation was the invention of the ecalculus, on which Hilbert's axiom systems were based, and the development of the esubstitution method as a basis for consistency proofs. The paper traces the development of the "simultaneous development of logic and mathematics" through the enotation and provides an analysis of Ackermann's consisten...
Hilbert’s Program Then and Now
, 2005
"... Hilbert’s program is, in the first instance, a proposal and a research program in the philosophy and foundations of mathematics. It was formulated in the early 1920s by German mathematician David Hilbert (1862–1943), and was pursued by him and his collaborators at the University of Göttingen and els ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
Hilbert’s program is, in the first instance, a proposal and a research program in the philosophy and foundations of mathematics. It was formulated in the early 1920s by German mathematician David Hilbert (1862–1943), and was pursued by him and his collaborators at the University of Göttingen and elsewhere in the 1920s
The Pragmatism of Hilbert’s Programme ∗
"... of the GaussWeber monument in memory of the great mathematical and physical tradition of the University of Göttingen. On the occasion of this ..."
Abstract
 Add to MetaCart
of the GaussWeber monument in memory of the great mathematical and physical tradition of the University of Göttingen. On the occasion of this
Philosophia Mathematica (III) 13 (2005), 115–134. doi:10.1093/philmat/nki010 ‘Mathematical Platonism ’ Versus Gathering the Dead: What Socrates teaches Glaucon †
"... Glaucon in Plato’s Republic fails to grasp intermediates. He confuses pursuing a goal with achieving it, and so he adopts ‘mathematical platonism’. He says mathematical objects are eternal. Socrates urges a seriously debatable, and seriously defensible, alternative centered on the destruction of hyp ..."
Abstract
 Add to MetaCart
Glaucon in Plato’s Republic fails to grasp intermediates. He confuses pursuing a goal with achieving it, and so he adopts ‘mathematical platonism’. He says mathematical objects are eternal. Socrates urges a seriously debatable, and seriously defensible, alternative centered on the destruction of hypotheses. He offers his version of geometry and astronomy as refuting the charge that he impiously ‘ponders things up in the sky and investigates things under the earth and makes the weaker argument the stronger’. We relate his account briefly to mathematical developments by Plato’s associates Theaetetus and Eudoxus, and then to the past 200 years ’ developments in geometry. Plato was much less prodigal of affirmation about metaphysical ultimates than interpreters who take his myths literally have supposed. (Paul Shorey [1935], p. 130) Mathematics views its most cherished answers only as springboards to deeper questions. (Barry Mazur [2003], p. 225)
Tous droits réservésDogmas and the Changing Images of Foundations
"... Le contenu de ce site relève de la législation française sur la propriété intellectuelle et est la propriété exclusive de l'éditeur. Les œuvres figurant sur ce site peuvent être consultées et reproduites sur un support papier ou numérique sous réserve qu'elles soient strictement réservées à un usage ..."
Abstract
 Add to MetaCart
Le contenu de ce site relève de la législation française sur la propriété intellectuelle et est la propriété exclusive de l'éditeur. Les œuvres figurant sur ce site peuvent être consultées et reproduites sur un support papier ou numérique sous réserve qu'elles soient strictement réservées à un usage soit personnel, soit scientifique ou pédagogique excluant toute exploitation commerciale. La reproduction devra obligatoirement mentionner l'éditeur, le nom de la revue, l'auteur et la référence du document. Toute autre reproduction est interdite sauf accord préalable de l'éditeur, en dehors des cas prévus par la législation en vigueur en France. Revues.org est un portail de revues en sciences humaines et sociales développé par le Cléo, Centre pour l'édition