Results 1  10
of
26
The ProofTheory and Semantics of Intuitionistic Modal Logic
, 1994
"... Possible world semantics underlies many of the applications of modal logic in computer science and philosophy. The standard theory arises from interpreting the semantic definitions in the ordinary metatheory of informal classical mathematics. If, however, the same semantic definitions are interpret ..."
Abstract

Cited by 130 (0 self)
 Add to MetaCart
(Show Context)
Possible world semantics underlies many of the applications of modal logic in computer science and philosophy. The standard theory arises from interpreting the semantic definitions in the ordinary metatheory of informal classical mathematics. If, however, the same semantic definitions are interpreted in an intuitionistic metatheory then the induced modal logics no longer satisfy certain intuitionistically invalid principles. This thesis investigates the intuitionistic modal logics that arise in this way. Natural deduction systems for various intuitionistic modal logics are presented. From one point of view, these systems are selfjustifying in that a possible world interpretation of the modalities can be read off directly from the inference rules. A technical justification is given by the faithfulness of translations into intuitionistic firstorder logic. It is also established that, in many cases, the natural deduction systems induce wellknown intuitionistic modal logics, previously given by Hilbertstyle axiomatizations. The main benefit of the natural deduction systems over axiomatizations is their
Propositional Lax Logic
, 1997
"... We investigate a novel intuitionistic modal logic, called Propositional Lax Logic, with promising applications to the formal verification of computer hardware. The logic has emerged from an attempt to express correctness `up to' behavioural constraints  a central notion in hardware verificat ..."
Abstract

Cited by 68 (8 self)
 Add to MetaCart
We investigate a novel intuitionistic modal logic, called Propositional Lax Logic, with promising applications to the formal verification of computer hardware. The logic has emerged from an attempt to express correctness `up to' behavioural constraints  a central notion in hardware verification  as a logical modality. The resulting logic is unorthodox in several respects. As a modal logic it is special since it features a single modal operator fl that has a flavour both of possibility and of necessity. As for hardware verification it is special since it is an intuitionistic rather than classical logic which so far has been the basis of the great majority of approaches. Finally, its models are unusual since they feature worlds with inconsistent information and furthermore the only frame condition is that the fl frame be a subrelation of the oeframe. In the paper we will provide the motivation for Propositional Lax Logic and present several technical results. We will investigate...
Categorical and Kripke Semantics for Constructive S4 Modal Logic
 In International Workshop on Computer Science Logic, CSL’01, L. Fribourg, Ed. Lecture Notes in Computer Science
, 2001
"... We consider two systems of constructive modal logic which are computationally motivated. Their modalities admit several computational interpretations and are used to capture intensional features such as notions of computation, constraints, concurrency, etc. Both systems have so far been studied m ..."
Abstract

Cited by 36 (1 self)
 Add to MetaCart
(Show Context)
We consider two systems of constructive modal logic which are computationally motivated. Their modalities admit several computational interpretations and are used to capture intensional features such as notions of computation, constraints, concurrency, etc. Both systems have so far been studied mainly from typetheoretic and categorytheoretic perspectives, but Kripke models for similar systems were studied independently. Here we bring these threads together and prove duality results which show how to relate Kripke models to algebraic models and these in turn to the appropriate categorical models for these logics.
On the relation between intuitionistic and classical modal logics. Algebra and Logic
, 1996
"... Intuitionistic propositional logic Int and its extensions, known as intermediate or superintuitionistic logics, in many respects can be regarded just as fragments of classical modal logics containing S4. Atthe syntactical level, the Godel translation t embeds every intermediate logic L = Int+ into m ..."
Abstract

Cited by 19 (5 self)
 Add to MetaCart
(Show Context)
Intuitionistic propositional logic Int and its extensions, known as intermediate or superintuitionistic logics, in many respects can be regarded just as fragments of classical modal logics containing S4. Atthe syntactical level, the Godel translation t embeds every intermediate logic L = Int+ into modal log1 ics in the interval L = [ L = S4 t (); L=Grz t ()]. Semantically this is re ected by the fact that Heyting algebras are precisely the algebras of open elements of topological Boolean algebras. From the latticetheoretic standpoint the map is a homomorphism of the lattice of logics containing S4 onto the lattice of intermediate logics, while, according to the Blok{Esakia theorem, is an isomorphism of the latter onto the lattice of extensions of the Grzegorczyk system Grz. Atthe philosophical level the Godel translation provides a classical interpretation of the intuitionistic connectives. And from the technical point of view this embedding is a powerful tool for transferring various kinds of results from intermediate logics to modal ones and back via preservation theorems.
Cutelimination and proofsearch for biintuitionistic logic using nested sequents
, 2008
"... We propose a new sequent calculus for biintuitionistic logic which sits somewhere between display calculi and traditional sequent calculi by using nested sequents. Our calculus enjoys a simple (purely syntactic) cutelimination proof as do display calculi. But it has an easily derivable variant cal ..."
Abstract

Cited by 15 (4 self)
 Add to MetaCart
(Show Context)
We propose a new sequent calculus for biintuitionistic logic which sits somewhere between display calculi and traditional sequent calculi by using nested sequents. Our calculus enjoys a simple (purely syntactic) cutelimination proof as do display calculi. But it has an easily derivable variant calculus which is amenable to automated proof search as are (some) traditional sequent calculi. We first present the initial calculus and its cutelimination proof. We then present the derived calculus, and then present a proofsearch strategy which allows it to be used for automated proof search. We prove that this search strategy is terminating and complete by showing how it can be used to mimic derivations obtained from an existing calculus GBiInt for biintuitionistic logic. As far as we know, our new calculus is the first sequent calculus for biintuitionistic logic which uses no semantic additions like labels, which has a purely syntactic cutelimination proof, and which can be used naturally for backwards proofsearch.
Topological duality for intuitionistic modal algebras
 Journal of Pure and Applied Algebra
, 2000
"... ..."
A Uniform Tableau Method for Intuitionistic Modal Logics I
 STUDIA LOGICA
, 1993
"... We present tableau systems and sequent calculi for the intuitionistic analogues IK, ID, IT, IKB, IKDB, IB, IK4, IKD4, IS4, IKB4, IK5, IKD5, IK45, IKD45 and IS5 of the normal classical modal logics. We provide soundness and completeness theorems with respect to the models of intuitionistic logic e ..."
Abstract

Cited by 10 (0 self)
 Add to MetaCart
We present tableau systems and sequent calculi for the intuitionistic analogues IK, ID, IT, IKB, IKDB, IB, IK4, IKD4, IS4, IKB4, IK5, IKD5, IK45, IKD45 and IS5 of the normal classical modal logics. We provide soundness and completeness theorems with respect to the models of intuitionistic logic enriched by a modal accessibility relation, as proposed by G. Fischer
Categorical and Kripke Semantics for Constructive Modal Logics
, 2001
"... We consider two systems of constructive modal logic which are computationally motivated. Their modalities admit several computational interpretations and are used to capture intensional features such as notions of computation, constraints, concurrency design, etc. Both systems have so far been studi ..."
Abstract

Cited by 7 (3 self)
 Add to MetaCart
We consider two systems of constructive modal logic which are computationally motivated. Their modalities admit several computational interpretations and are used to capture intensional features such as notions of computation, constraints, concurrency design, etc. Both systems have so far been studied mainly from a typetheoretic and categorytheoretic perspectives, but Kripke models for similar systems were studied independently. Here we bring these threads together and prove duality results which show how to relate Kripke models to algebraic models and these in turn to the appropriate categorical models for these logics.
Towards constructive hybrid logic (Extended Abstract)
 IN ELEC. PROC. OF METHODS FOR MODALITIES 3
, 2003
"... ..."