Results 1 
3 of
3
Formal Topology and Constructive Mathematics: the Gelfand and StoneYosida Representation Theorems
 Journal of Universal Computer Science
, 2005
"... Abstract. We present a constructive proof of the StoneYosida representation theorem for Riesz spaces motivated by considerations from formal topology. This theorem is used to derive a representation theorem for falgebras. In turn, this theorem implies the Gelfand representation theorem for C*alge ..."
Abstract

Cited by 14 (6 self)
 Add to MetaCart
Abstract. We present a constructive proof of the StoneYosida representation theorem for Riesz spaces motivated by considerations from formal topology. This theorem is used to derive a representation theorem for falgebras. In turn, this theorem implies the Gelfand representation theorem for C*algebras of operators on Hilbert spaces as formulated by Bishop and Bridges. Our proof is shorter, clearer, and we avoid the use of approximate eigenvalues.
LOCATEDNESS AND OVERT SUBLOCALES
, 2009
"... Abstract. Locatedness is one of the fundamental notions in constructive mathematics. The existence of a positivity predicate on a locale, i.e. the locale being overt, or open, has proved to be fundamental in constructive locale theory. We show that the two notions are intimately connected. Bishop de ..."
Abstract
 Add to MetaCart
Abstract. Locatedness is one of the fundamental notions in constructive mathematics. The existence of a positivity predicate on a locale, i.e. the locale being overt, or open, has proved to be fundamental in constructive locale theory. We show that the two notions are intimately connected. Bishop defines a metric space to be compact if it is complete and totally bounded. A subset of a totally bounded set is again totally bounded iff it is located. So a closed subset of a Bishop compact set is Bishop compact iff it is located. We translate this result to formal topology. ‘Bishop compact ’ is translated as compact and overt. We propose a definition of located predicate on subspaces in formal topology. We call a sublocale located if it can be presented by a formal topology with a located predicate. We prove that a closed sublocale of a compact regular locale has a located predicate iff it is overt. Moreover, a Bishopclosed subset of a complete metric space is Bishop compact — that is, totally bounded and complete — iff its localic completion is compact overt. Finally, we show by elementary methods that the points of the Vietoris locale of a compact regular locale are precisely its compact overt sublocales. We work constructively, predicatively and avoid the use of the axiom of countable choice. Consequently, all our results are valid in any predicative topos. 1.
CCA 2008 Efficient Computation with Dedekind Reals
"... Cauchy’s construction of reals as sequences of rational approximations is the theoretical basis for a number of implementations of exact real numbers, while Dedekind’s construction of reals as cuts has inspired fewer useful computational ideas. Nevertheless, we can see the computational content of D ..."
Abstract
 Add to MetaCart
Cauchy’s construction of reals as sequences of rational approximations is the theoretical basis for a number of implementations of exact real numbers, while Dedekind’s construction of reals as cuts has inspired fewer useful computational ideas. Nevertheless, we can see the computational content of Dedekind reals by constructing them within Abstract Stone Duality (ASD), a computationally meaningful calculus for topology. This provides the theoretical background for a novel way of computing with real numbers in the style of logic programming. Real numbers are defined in terms of (lower and upper) Dedekind cuts, while programs are expressed as statements about real numbers in the language of ASD. By adapting Newton’s method to interval arithmetic we can make the computations as efficient as those based on Cauchy reals. The results reported in this talk are joint work with Paul Taylor. Keywords: