Results 1  10
of
13
Geometry of Interaction and Linear Combinatory Algebras
, 2000
"... this paper was quite di#erent, stemming from the axiomatics of categories of tangles (although the authors were aware of possible connections to iteration theories. In fact, similar axiomatics in the symmetric case, motivated by flowcharts and "flownomials" had been developed some years earlier by S ..."
Abstract

Cited by 43 (10 self)
 Add to MetaCart
this paper was quite di#erent, stemming from the axiomatics of categories of tangles (although the authors were aware of possible connections to iteration theories. In fact, similar axiomatics in the symmetric case, motivated by flowcharts and "flownomials" had been developed some years earlier by Stefanescu (Stefanescu 2000).) However, the first author realized, following a stimulating discussion with Gordon Plotkin, that traced monoidal categories provided a common denominator for the axiomatics of both the Girardstyle and AbramskyJagadeesanstyle versions of the Geometry of Interaction, at the basic level of the multiplicatives. This insight was presented in (Abramsky 1996), in which Girardstyle GoI was dubbed "particlestyle", since it concerns information particles or tokens flowing around a network, while the AbramskyJagadeesan style GoI was dubbed "wavestyle", since it concerns the evolution of a global information state or "wave". Formally, this distinction is based on whether the tensor product (i.e. the symmetric monoidal structure) in the underlying category is interpreted as a coproduct (particle style) or as a product (wave style). This computational distinction between coproduct and product interpretations of the same underlying network geometry turned out to have been partially anticipated, in a rather di#erent context, in a pioneering paper by E. S. Bainbridge (Bainbridge 1976), as observed by Dusko Pavlovic. These two forms of interpretation, and ways of combining them, have also been studied recently in (Stefanescu 2000). He uses the terminology "additive" for coproductbased (i.e. our "particlestyle") and "multiplicative" for productbased (i.e. our "wavestyle"); this is not suitable for our purposes, because of the clash with Linear Logic term...
Sequentiality vs. Concurrency in Games and Logic
 Math. Structures Comput. Sci
, 2001
"... Connections between the sequentiality/concurrency distinction and the semantics of proofs are investigated, with particular reference to games and Linear Logic. ..."
Abstract

Cited by 13 (0 self)
 Add to MetaCart
Connections between the sequentiality/concurrency distinction and the semantics of proofs are investigated, with particular reference to games and Linear Logic.
Chu Spaces as a Semantic Bridge Between Linear Logic and Mathematics
 Theoretical Computer Science
, 1998
"... The motivating role of linear logic is as a "logic behind logic." We propose a sibling role for it as a logic of transformational mathematics via the selfdual category of Chu spaces, a generalization of topological spaces. These create a bridge between linear logic and mathematics by soundly interp ..."
Abstract

Cited by 12 (2 self)
 Add to MetaCart
The motivating role of linear logic is as a "logic behind logic." We propose a sibling role for it as a logic of transformational mathematics via the selfdual category of Chu spaces, a generalization of topological spaces. These create a bridge between linear logic and mathematics by soundly interpreting linear logic while fully and concretely embedding a comprehensive range of concrete categories of mathematics. Our main goal is to treat each end of this bridge in expository detail. In addition we introduce the dialectic lambdacalculus, and show that dinaturality semantics is not fully complete for the Chu interpretation of linear logic. 1 Introduction Linear logic was introduced by J.Y. Girard as a "logic behind logic." It separates logical reasoning into a core linear part in which formulas are merely moved around, and an auxiliary nonlinear part in which formulas may be deleted and copied. The core, multiplicative linear logic (MLL), is a substructural logic whose basic connect...
Logical Predicates for Intuitionistic Linear Type Theories
 In Typed Lambda Calculi and Applications (TLCA'99), Lecture Notes in Computer Science 1581
, 1999
"... We develop a notion of Kripkelike parameterized logical predicates for two fragments of intuitionistic linear logic (MILL and DILL) in terms of their categorytheoretic models. Such logical predicates are derived from the categorical glueing construction combined with the free symmetric monoidal co ..."
Abstract

Cited by 11 (4 self)
 Add to MetaCart
We develop a notion of Kripkelike parameterized logical predicates for two fragments of intuitionistic linear logic (MILL and DILL) in terms of their categorytheoretic models. Such logical predicates are derived from the categorical glueing construction combined with the free symmetric monoidal cocompletion. As applications, we obtain full completeness results of translations between linear type theories.
Types for Quantum Computation
, 2007
"... This thesis is a study of the construction and representation of typed models of quantum mechanics for use in quantum computation. We introduce logical and graphical syntax for quantum mechanical processes and prove that these formal systems provide sound and complete representations of abstract qua ..."
Abstract

Cited by 11 (5 self)
 Add to MetaCart
This thesis is a study of the construction and representation of typed models of quantum mechanics for use in quantum computation. We introduce logical and graphical syntax for quantum mechanical processes and prove that these formal systems provide sound and complete representations of abstract quantum mechanics. In addition, we demonstrate how these representations may be used to reason about the behaviour of quantum computational processes. Quantum computation is presently mired in lowlevel formalisms, mostly derived directly from matrices over Hilbert spaces. These formalisms are an obstacle to the full understanding and exploitation of quantum effects in informatics since they obscure the essential structure of quantum states and processes. The aim of this work is to introduce higher level tools for quantum mechanics which will be better suited to computation than those presently employed in the field. Inessential details of Hilbert space representations are removed and the informatic structures are presented directly. Entangled states are particularly
Category theory for linear logicians
 Linear Logic in Computer Science
, 2004
"... This paper presents an introduction to category theory with an emphasis on those aspects relevant to the analysis of the model theory of linear logic. With this in mind, we focus on the basic definitions of category theory and categorical logic. An analysis of cartesian and cartesian closed categori ..."
Abstract

Cited by 7 (1 self)
 Add to MetaCart
This paper presents an introduction to category theory with an emphasis on those aspects relevant to the analysis of the model theory of linear logic. With this in mind, we focus on the basic definitions of category theory and categorical logic. An analysis of cartesian and cartesian closed categories and their relation to intuitionistic logic is followed by a consideration of symmetric monoidal closed, linearly distributive and ∗autonomous categories and their relation to multiplicative linear logic. We examine nonsymmetric monoidal categories, and consider them as models of noncommutative linear logic. We introduce traced monoidal categories, and discuss their relation to the geometry of interaction. The necessary aspects of the theory of monads is introduced in order to describe the categorical modelling of the exponentials. We conclude by briefly describing the notion of full completeness, a strong form of categorical completeness, which originated in the categorical model theory of linear logic. No knowledge of category theory is assumed, but we do assume knowledge of linear logic sequent calculus and the standard models of linear logic, and modest familiarity with typed lambda calculus. 0
Chu’s Construction: A Prooftheoretic Approach
 LOGIC FOR CONCURRENCY AND SYNCHRONISATION”, KLUWER TRENDS IN LOGIC N.18, 2003, PP.93114. LAMBDA CALCULUS 37
, 2001
"... ..."
On categorical models of classical logic and the geometry of interaction
, 2005
"... It is wellknown that weakening and contraction cause naïve categorical models of the classical sequent calculus to collapse to Boolean lattices. In previous work, summarized briefly herein, we have provided a class of models called classical categories which is sound and complete and avoids this co ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
It is wellknown that weakening and contraction cause naïve categorical models of the classical sequent calculus to collapse to Boolean lattices. In previous work, summarized briefly herein, we have provided a class of models called classical categories which is sound and complete and avoids this collapse by interpreting cutreduction by a posetenrichment. Examples of classical categories include boolean lattices and the category of sets and relations, where both conjunction and disjunction are modelled by the settheoretic product. In this article, which is selfcontained, we present an improved axiomatization of classical categories, together with a deep exploration of their structural theory. Observing that the collapse already happens in the absence of negation, we start with negationfree models called Dummett categories. Examples include, besides the classical categories above, the category of sets and relations, where both conjunction and disjunction are modelled by the disjoint union. We prove that Dummett categories are MIX, and that the partial order can be derived from homsemilattices which have a straightforward prooftheoretic definition. Moreover, we show that the GeometryofInteraction construction can be extended from multiplicative linear logic to classical logic, by applying it to obtain a classical
A categorical semantics for polarized mall
 Ann. Pure Appl. Logic
"... In this paper, we present a categorical model for Multiplicative Additive Polarized Linear Logic MALLP, which is the linear fragment (without structural rules) of Olivier Laurent’s Polarized Linear Logic. Our model is based on an adjunction between reflective/coreflective full subcategories C−/C+ of ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
In this paper, we present a categorical model for Multiplicative Additive Polarized Linear Logic MALLP, which is the linear fragment (without structural rules) of Olivier Laurent’s Polarized Linear Logic. Our model is based on an adjunction between reflective/coreflective full subcategories C−/C+ of an ambient ∗autonomous category C (with products). Similar structures were first introduced by M. Barr in the late 1970’s in abstract duality theory and more recently in work on game semantics for linear logic. The paper has two goals: to discuss concrete models and to present various completeness theorems. As concrete examples, we present (i) a hypercoherence model, using Ehrhard’s hereditary/antihereditary objects, (ii) a Chuspace model, (iii) a double gluing model over our categorical framework, and (iv) a model based on iterated double gluing over a ∗autonomous category. For the multiplicative fragment MLLP of MALLP, we present both weakly full (Läuchlistyle) as well as full completeness theorems, using a polarized version of functorial