Results 1  10
of
11
Calculi of Generalised βReduction and Explicit Substitutions: The TypeFree and Simply Typed Versions
, 1998
"... Extending the λcalculus with either explicit substitution or generalized reduction has been the subject of extensive research recently, and still has many open problems. This paper is the first investigation into the properties of a calculus combining both generalized reduction and explicit substit ..."
Abstract

Cited by 14 (7 self)
 Add to MetaCart
Extending the λcalculus with either explicit substitution or generalized reduction has been the subject of extensive research recently, and still has many open problems. This paper is the first investigation into the properties of a calculus combining both generalized reduction and explicit substitutions. We present a calculus, gs, that combines a calculus of explicit substitution, s, and a calculus with generalized reduction, g. We believe that gs is a useful extension of the  calculus, because it allows postponement of work in two different but complementary ways. Moreover, gs (and also s) satisfies properties desirable for calculi of explicit substitutions and generalized reductions. In particular, we show that gs preserves strong normalization, is a conservative extension of g, and simulates fireduction of g and the classical calculus. Furthermore, we study the simply typed versions of s and gs, and show that welltyped terms are strongly normalizing and that other properties,...
BetaReduction As Unification
, 1996
"... this report, we use a lean version of the usual system of intersection types, whichwe call . Hence, UP is also an appropriate unification problem to characterize typability of terms in . Quite apart from the new light it sheds on fireduction, such an analysis turns out to have several othe ..."
Abstract

Cited by 13 (9 self)
 Add to MetaCart
this report, we use a lean version of the usual system of intersection types, whichwe call . Hence, UP is also an appropriate unification problem to characterize typability of terms in . Quite apart from the new light it sheds on fireduction, such an analysis turns out to have several other benefits
Perpetual Reductions in λCalculus
, 1999
"... This paper surveys a part of the theory of fireduction in calculus which might aptly be called perpetual reductions. The theory is concerned with perpetual reduction strategies, i.e., reduction strategies that compute infinite reduction paths from terms (when possible), and with perpetual red ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
This paper surveys a part of the theory of fireduction in calculus which might aptly be called perpetual reductions. The theory is concerned with perpetual reduction strategies, i.e., reduction strategies that compute infinite reduction paths from terms (when possible), and with perpetual redexes, i.e., redexes whose contraction in terms preserves the possibility (when present) of infinite reduction paths. The survey not only recasts classical theorems in a unified setting, but also offers new results, proofs, and techniques, as well as a number of applications to problems in calculus and type theory. 1. Introduction Considerable attention has been devoted to classification of reduction strategies in typefree calculus [4, 6, 7, 15, 38, 44, 81]see also [2, Ch. 13]. We are concerned with strategies differing in the length of reduction paths. This paper draws on several sources. In late 1994, van Raamsdonk and Severi [59] and Srensen [66, 67] independently developed ...
Perpetuality and Uniform Normalization in Orthogonal Rewrite Systems
 INFORMATION AND COMPUTATION
"... We present two characterizations of perpetual redexes, which are redexes whose contractions retain the possibility of infinite reductions. These characterizations generalize and strengthen existing criteria for the perpetuality of redexes in orthogonal Term Rewriting Systems and the calculus due ..."
Abstract

Cited by 7 (2 self)
 Add to MetaCart
We present two characterizations of perpetual redexes, which are redexes whose contractions retain the possibility of infinite reductions. These characterizations generalize and strengthen existing criteria for the perpetuality of redexes in orthogonal Term Rewriting Systems and the calculus due to Bergstra and Klop, and others. To unify our results with those in the literature, we introduce Contextsensitive Conditional Expression Reduction Systems (CCERSs) and prove confluence for orthogonal CCERSs. We then define a perpetual onestep reduction strategy which enables one to construct minimal (w.r.t. Levy's permutation ordering on reductions) infinite reductions in orthogonal CCERSs. We then prove (1) perpetuality (in a specific context) of a redex whose contraction does not erase potentially infinite arguments, which are possibly finite (i.e., strongly normalizable) arguments that may become infinite after a number of outside steps, and (2) perpetuality (in every con...
Perpetual Reductions in λCalculus
, 1999
"... This paper surveys a part of the theory of fireduction in λcalculus which might aptly be called perpetual reductions. The theory is concerned with perpetual reduction strategies, i.e., reduction strategies that compute infinite reduction paths from λterms (when possible), and with perpetual r ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
This paper surveys a part of the theory of fireduction in λcalculus which might aptly be called perpetual reductions. The theory is concerned with perpetual reduction strategies, i.e., reduction strategies that compute infinite reduction paths from λterms (when possible), and with perpetual redexes, i.e., redexes whose contraction in λterms preserves the possibility (when present) of infinite reduction paths. The survey not only recasts classical theorems in a unified setting, but also offers new results, proofs, and techniques, as well as a number of applications to problems in λcalculus and type theory.
Reflections on Reflections
, 1997
"... In the functional programming literature, compiling is often expressed as a translation between source and target program calculi. In recent work, Sabry and Wadler proposed the notion of a reflection as a basis for relating the source and target calculi. A reflection elegantly describes the situati ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
In the functional programming literature, compiling is often expressed as a translation between source and target program calculi. In recent work, Sabry and Wadler proposed the notion of a reflection as a basis for relating the source and target calculi. A reflection elegantly describes the situation where there is a kernel of the source language that is isomorphic to the target language. However, we believe that the reflection criteria is so strong that it often excludes the usual situation in compiling where one is compiling from a higherlevel to a lowerlevel language. We give a detailed analysis of several translations commonly used in compiling that fail to be reflections. We conclude that, in addition to the notion of reflection, there are several relations weaker a reflection that are useful for characterizing translations. We show that several familiar translations (that are not naturally reflections) form what we call a reduction correspondence. We introduce the more genera...
Weak Normalization Implies Strong Normalization in Generalized NonDependent Pure Type Systems
 Comput. Sci
, 1997
"... The BarendregtGeuversKlop conjecture states that every weakly normalizing pure type system is also strongly normalizing. We show that this is true for a uniform class of systems which includes, e.g., the left hand side of Barendregt's cube as well as the system U . This seems to be the first resu ..."
Abstract

Cited by 4 (3 self)
 Add to MetaCart
The BarendregtGeuversKlop conjecture states that every weakly normalizing pure type system is also strongly normalizing. We show that this is true for a uniform class of systems which includes, e.g., the left hand side of Barendregt's cube as well as the system U . This seems to be the first result giving a positive answer to the conjecture not merely for some concrete systems for which strong normalization is known to hold, but for a uniform class of systems in which not all systems are strongly normalizing. 1.
A Linearization of the LambdaCalculus and Consequences
, 2000
"... We embed the standard #calculus, denoted #, into two larger #calculi, denoted # # and &# # . The standard notion of #reduction for # corresponds to two new notions of reduction, # # for # # and &# # for &# # . A distinctive feature of our new calculus # # (resp., &# # ) is that, in every function ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
We embed the standard #calculus, denoted #, into two larger #calculi, denoted # # and &# # . The standard notion of #reduction for # corresponds to two new notions of reduction, # # for # # and &# # for &# # . A distinctive feature of our new calculus # # (resp., &# # ) is that, in every function application, an argument is used at most once (resp., exactly once) in the body of the function. We establish various connections between the three notions of reduction, #, # # and &# # . As a consequence, we provide an alternative framework to study the relationship between #weak normalization and #strong normalization, and give a new proof of the oftmentioned equivalence between #strong normalization of standard #terms and typability in a system of "intersection types".
Conservation and Uniform Normalization in Lambda Calculi With Erasing Reductions
, 2002
"... For a notion of reduction in a #calculus one can ask whether a term satises conservation and uniform normalization. Conservation means that singlestep reductions of the term preserve innite reduction paths from the term. Uniform normalization means that either the term will have no reduction path ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
For a notion of reduction in a #calculus one can ask whether a term satises conservation and uniform normalization. Conservation means that singlestep reductions of the term preserve innite reduction paths from the term. Uniform normalization means that either the term will have no reduction paths leading to a normal form, or all reduction paths will lead to a normal form.
Calculi of Generalised betaReduction and Explicit Substitutions: The TypeFree and Simply Typed Versions
, 1997
"... Extending the calculus with either explicit substitution or generalised reduction has been the subject of extensive research recently and still has many open problems. This paper is the first investigation into the properties of a calculus combining both generalised reduction and explicit substitut ..."
Abstract
 Add to MetaCart
Extending the calculus with either explicit substitution or generalised reduction has been the subject of extensive research recently and still has many open problems. This paper is the first investigation into the properties of a calculus combining both generalised reduction and explicit substitutions. We present a calculus, gs, that combines a calculus of explicit substitution, s, and a calculus with generalized reduction, g. We believe that gs is a useful extension of the calculus because it allows postponment of work in two different but complementary ways. Moreover, gs (and also s) satisfies desirable properties of calculi of explicit substitutions and generalised reductions. In particular, we show that gs preserves strong normalisation, is a conservative extension of g, and simulates fireduction of g and the classical calculus. Furthermore, we study the simply typed versions of s and gs and show that well typed terms are strongly normalising and that other properties such as...