Results 1  10
of
31
Complete restrictions of the intersection type discipline
 Theoretical Computer Science
, 1992
"... In this paper the intersection type discipline as defined in [Barendregt et al. ’83] is studied. We will present two different and independent complete restrictions of the intersection type discipline. The first restricted system, the strict type assignment system, is presented in section two. Its m ..."
Abstract

Cited by 103 (40 self)
 Add to MetaCart
In this paper the intersection type discipline as defined in [Barendregt et al. ’83] is studied. We will present two different and independent complete restrictions of the intersection type discipline. The first restricted system, the strict type assignment system, is presented in section two. Its major feature is the absence of the derivation rule (≤) and it is based on a set of strict types. We will show that these together give rise to a strict filter lambda model that is essentially different from the one presented in [Barendregt et al. ’83]. We will show that the strict type assignment system is the nucleus of the full system, i.e. for every derivation in the intersection type discipline there is a derivation in which (≤) is used only at the very end. Finally we will prove that strict type assignment is complete for inference semantics. The second restricted system is presented in section three. Its major feature is the absence of the type ω. We will show that this system gives rise to a filter λImodel and that type assignment without ω is complete for the λIcalculus. Finally we will prove that a lambda term is typeable in this system if and only if it is strongly normalizable.
The Essence of Principal Typings
 In Proc. 29th Int’l Coll. Automata, Languages, and Programming, volume 2380 of LNCS
, 2002
"... Let S be some type system. A typing in S for a typable term M is the collection of all of the information other than M which appears in the final judgement of a proof derivation showing that M is typable. For example, suppose there is a derivation in S ending with the judgement A M : # meanin ..."
Abstract

Cited by 86 (12 self)
 Add to MetaCart
Let S be some type system. A typing in S for a typable term M is the collection of all of the information other than M which appears in the final judgement of a proof derivation showing that M is typable. For example, suppose there is a derivation in S ending with the judgement A M : # meaning that M has result type # when assuming the types of free variables are given by A. Then (A, #) is a typing for M .
Programming with Intersection Types and Bounded Polymorphism
, 1991
"... representing the official policies, either expressed or implied, of the U.S. Government. ..."
Abstract

Cited by 67 (4 self)
 Add to MetaCart
representing the official policies, either expressed or implied, of the U.S. Government.
Principality and Decidable Type Inference for FiniteRank Intersection Types
 In Conf. Rec. POPL ’99: 26th ACM Symp. Princ. of Prog. Langs
, 1999
"... Principality of typings is the property that for each typable term, there is a typing from which all other typings are obtained via some set of operations. Type inference is the problem of finding a typing for a given term, if possible. We define an intersection type system which has principal typin ..."
Abstract

Cited by 51 (17 self)
 Add to MetaCart
Principality of typings is the property that for each typable term, there is a typing from which all other typings are obtained via some set of operations. Type inference is the problem of finding a typing for a given term, if possible. We define an intersection type system which has principal typings and types exactly the strongly normalizable terms. More interestingly, every finiterank restriction of this system (using Leivant's first notion of rank) has principal typings and also has decidable type inference. This is in contrast to System F where the finite rank restriction for every finite rank at 3 and above has neither principal typings nor decidable type inference. This is also in contrast to earlier presentations of intersection types where the status (decidable or undecidable) of these properties is unknown for the finiterank restrictions at 3 and above. Furthermore, the notion of principal typings for our system involves only one operation, substitution, rather than severa...
Intersection Types and Bounded Polymorphism
, 1996
"... this paper (Compagnoni, Intersection Types and Bounded Polymorphism 3 1994; Compagnoni, 1995) has been used in a typetheoretic model of objectoriented multiple inheritance (Compagnoni & Pierce, 1996). Related calculi combining restricted forms of intersection types with higherorder polymorph ..."
Abstract

Cited by 36 (0 self)
 Add to MetaCart
this paper (Compagnoni, Intersection Types and Bounded Polymorphism 3 1994; Compagnoni, 1995) has been used in a typetheoretic model of objectoriented multiple inheritance (Compagnoni & Pierce, 1996). Related calculi combining restricted forms of intersection types with higherorder polymorphism and dependent types have been studied by Pfenning (Pfenning, 1993). Following a more detailed discussion of the pure systems of intersections and bounded quantification (Section 2), we describe, in Section 3, a typed calculus called F ("Fmeet ") integrating the features of both. Section 4 gives some examples illustrating this system's expressive power. Section 5 presents the main results of the paper: a prooftheoretic analysis of F 's subtyping and typechecking relations leading to algorithms for checking subtyping and for synthesizing minimal types for terms. Section 6 discusses semantic aspects of the calculus, obtaining a simple soundness proof for the typing rules by interpreting types as partial equivalence relations; however, another prooftheoretic result, the nonexistence of least upper bounds for arbitrary pairs of types, implies that typed models may be more difficult to construct. Section 7 offers concluding remarks. 2. Background
Principal type schemes for the strict type assignment system
 Logic and Computation
, 1993
"... We study the strict type assignment system, a restriction of the intersection type discipline [6], and prove that it has the principal type property. We define, for a term, the principal pair (of basis and type). We specify three operations on pairs, and prove that all pairs deducible for can be obt ..."
Abstract

Cited by 35 (19 self)
 Add to MetaCart
We study the strict type assignment system, a restriction of the intersection type discipline [6], and prove that it has the principal type property. We define, for a term, the principal pair (of basis and type). We specify three operations on pairs, and prove that all pairs deducible for can be obtained from the principal one by these operations, and that these map deducible pairs to deducible pairs.
Principality and Type Inference for Intersection Types Using Expansion Variables
, 2003
"... Principality of typings is the property that for each typable term, there is a typing from which all other typings are obtained via some set of operations. Type inference is the problem of finding a typing for a given term, if possible. We define an intersection type system which has principal typ ..."
Abstract

Cited by 26 (12 self)
 Add to MetaCart
Principality of typings is the property that for each typable term, there is a typing from which all other typings are obtained via some set of operations. Type inference is the problem of finding a typing for a given term, if possible. We define an intersection type system which has principal typings and types exactly the strongly normalizable #terms. More interestingly, every finiterank restriction of this system (using Leivant's first notion of rank) has principal typings and also has decidable type inference.
Type inference and semiunification
 In Proceedings of the ACM Conference on LISP and Functional Programming (LFP ) (Snowbird
, 1988
"... In the last ten years declarationfree programming languages with a polymorphic typing discipline (ML, B) have been developed to approximate the flexibility and conciseness of dynamically typed languages (LISP, SETL) while retaining the safety and execution efficiency of conventional statically type ..."
Abstract

Cited by 25 (6 self)
 Add to MetaCart
In the last ten years declarationfree programming languages with a polymorphic typing discipline (ML, B) have been developed to approximate the flexibility and conciseness of dynamically typed languages (LISP, SETL) while retaining the safety and execution efficiency of conventional statically typed languages (Algol68, Pascal). These polymorphic languages can be type checked at compile time, yet allow functions whose arguments range over a variety of types. We investigate several polymorphic type systems, the most powerful of which, termed MilnerMycroft Calculus, extends the socalled letpolymorphism found in, e.g., ML with a polymorphic typing rule for recursive definitions. We show that semiunification, the problem of solving inequalities over firstorder terms, characterizes type checking in the MilnerMycroft Calculus to polynomial time, even in the restricted case where nested definitions are disallowed. This permits us to extend some infeasibility results for related combinatorial problems to type inference and to correct several claims and statements in the literature. We prove the existence of unique most general solutions of term inequalities, called most general semiunifiers, and present an algorithm for computing them that terminates for all known inputs due to a novel “extended occurs check”. We conjecture this algorithm to be
Expansion: the Crucial Mechanism for Type Inference with Intersection Types: Survey and Explanation
 In: (ITRS ’04
, 2005
"... The operation of expansion on typings was introduced at the end of the 1970s by Coppo, Dezani, and Venneri for reasoning about the possible typings of a term when using intersection types. Until recently, it has remained somewhat mysterious and unfamiliar, even though it is essential for carrying ..."
Abstract

Cited by 17 (7 self)
 Add to MetaCart
The operation of expansion on typings was introduced at the end of the 1970s by Coppo, Dezani, and Venneri for reasoning about the possible typings of a term when using intersection types. Until recently, it has remained somewhat mysterious and unfamiliar, even though it is essential for carrying out compositional type inference. The fundamental idea of expansion is to be able to calculate the effect on the final judgement of a typing derivation of inserting a use of the intersectionintroduction typing rule at some (possibly deeply nested) position, without actually needing to build the new derivation.
Discovering Needed Reductions Using Type Theory
, 1994
"... The identification of the needed redexes in a term is an undecidable problem. We introduce a (partially decidable) type assignment system, which distinguishes certain redexes called the allowable redexes. For a welltyped term e, allowable redexes are needed redexes. In addition, with principal typi ..."
Abstract

Cited by 16 (0 self)
 Add to MetaCart
The identification of the needed redexes in a term is an undecidable problem. We introduce a (partially decidable) type assignment system, which distinguishes certain redexes called the allowable redexes. For a welltyped term e, allowable redexes are needed redexes. In addition, with principal typing, all the needed redexes of a normalisable term are allowable. Using these results, we can identify all the needed reductions of a principally typed normalisable term. Possible applications of these results include strictness and sharing analysis for functional programming languages, and a reduction strategy for welltyped terms which satisfies L'evy's notion of optimal reduction.