Results 1  10
of
62
Combinatory Reduction Systems: introduction and survey
 THEORETICAL COMPUTER SCIENCE
, 1993
"... Combinatory Reduction Systems, or CRSs for short, were designed to combine the usual firstorder format of term rewriting with the presence of bound variables as in pure λcalculus and various typed calculi. Bound variables are also present in many other rewrite systems, such as systems with simpl ..."
Abstract

Cited by 96 (9 self)
 Add to MetaCart
Combinatory Reduction Systems, or CRSs for short, were designed to combine the usual firstorder format of term rewriting with the presence of bound variables as in pure λcalculus and various typed calculi. Bound variables are also present in many other rewrite systems, such as systems with simplification rules for proof normalization. The original idea of CRSs is due to Aczel, who introduced a restricted class of CRSs and, under the assumption of orthogonality, proved confluence. Orthogonality means that the rules are nonambiguous (no overlap leading to a critical pair) and leftlinear (no global comparison of terms necessary). We introduce the class of orthogonal CRSs, illustrated with many examples, discuss its expressive power, and give an outline of a short proof of confluence. This proof is a direct generalization of Aczel's original proof, which is close to the wellknown confluence proof for λcalculus by Tait and MartinLof. There is a wellknown connection between the para...
The Conservation Theorem revisited
, 1993
"... This paper describes a method of proving strong normalization based on an extension of the conservation theorem. We introduce a structural notion of reduction that we call fi S , and we prove that any term that has a fi I fi Snormal form is strongly finormalizable. We show how to use this result ..."
Abstract

Cited by 37 (0 self)
 Add to MetaCart
This paper describes a method of proving strong normalization based on an extension of the conservation theorem. We introduce a structural notion of reduction that we call fi S , and we prove that any term that has a fi I fi Snormal form is strongly finormalizable. We show how to use this result to prove the strong normalization of different typed calculi.
The Calculus of Algebraic Constructions
 In Proc. of the 10th Int. Conf. on Rewriting Techniques and Applications, LNCS 1631
, 1999
"... Abstract. In a previous work, we proved that an important part of the Calculus of Inductive Constructions (CIC), the basis of the Coq proof assistant, can be seen as a Calculus of Algebraic Constructions (CAC), an extension of the Calculus of Constructions with functions and predicates defined by hi ..."
Abstract

Cited by 33 (11 self)
 Add to MetaCart
(Show Context)
Abstract. In a previous work, we proved that an important part of the Calculus of Inductive Constructions (CIC), the basis of the Coq proof assistant, can be seen as a Calculus of Algebraic Constructions (CAC), an extension of the Calculus of Constructions with functions and predicates defined by higherorder rewrite rules. In this paper, we prove that almost all CIC can be seen as a CAC, and that it can be further extended with nonstrictly positive types and inductiverecursive types together with nonfree constructors and patternmatching on defined symbols. 1.
Inductive types in the calculus of algebraic constructions
 FUNDAMENTA INFORMATICAE 65(12) (2005) 61–86 JOURNAL VERSION OF TLCA’03
, 2005
"... In a previous work, we proved that almost all of the Calculus of Inductive Constructions (CIC), the basis of the proof assistant Coq, can be seen as a Calculus of Algebraic Constructions (CAC), an extension of the Calculus of Constructions with functions and predicates defined by higherorder rewrit ..."
Abstract

Cited by 19 (4 self)
 Add to MetaCart
In a previous work, we proved that almost all of the Calculus of Inductive Constructions (CIC), the basis of the proof assistant Coq, can be seen as a Calculus of Algebraic Constructions (CAC), an extension of the Calculus of Constructions with functions and predicates defined by higherorder rewrite rules. In this paper, we prove that CIC as a whole can be seen as a CAC, and that it can be extended with nonstrictly positive types and inductiverecursive types together with nonfree constructors and patternmatching on defined symbols.
The Longest Perpetual Reductions in Orthogonal Expression Reduction Systems
 In: Proc. of the 3 rd International Conference on Logical Foundations of Computer Science, LFCS'94, A. Nerode and Yu.V. Matiyasevich, eds., Springer LNCS
, 1994
"... We consider reductions in Orthogonal Expression Reduction Systems (OERS), that is, Orthogonal Term Rewriting Systems with bound variables and substitutions, as in the calculus. We design a strategy that for any given term t constructs a longest reduction starting from t if t is strongly normaliza ..."
Abstract

Cited by 19 (8 self)
 Add to MetaCart
(Show Context)
We consider reductions in Orthogonal Expression Reduction Systems (OERS), that is, Orthogonal Term Rewriting Systems with bound variables and substitutions, as in the calculus. We design a strategy that for any given term t constructs a longest reduction starting from t if t is strongly normalizable, and constructs an infinite reduction otherwise. The Conservation Theorem for OERSs follows easily from the properties of the strategy. We develop a method for computing the length of a longest reduction starting from a strongly normalizable term. We study properties of pure substitutions and several kinds of similarity of redexes. We apply these results to construct an algorithm for computing lengths of longest reductions in strongly persistent OERSs that does not require actual transformation of the input term. As a corollary, we have an algorithm for computing lengths of longest developments in OERSs. 1 Introduction A strategy is perpetual if, given a term t, it constructs an infinit...
Calculi of Generalised βReduction and Explicit Substitutions: The TypeFree and Simply Typed Versions
, 1998
"... Extending the λcalculus with either explicit substitution or generalized reduction has been the subject of extensive research recently, and still has many open problems. This paper is the first investigation into the properties of a calculus combining both generalized reduction and explicit substit ..."
Abstract

Cited by 16 (8 self)
 Add to MetaCart
Extending the λcalculus with either explicit substitution or generalized reduction has been the subject of extensive research recently, and still has many open problems. This paper is the first investigation into the properties of a calculus combining both generalized reduction and explicit substitutions. We present a calculus, gs, that combines a calculus of explicit substitution, s, and a calculus with generalized reduction, g. We believe that gs is a useful extension of the  calculus, because it allows postponement of work in two different but complementary ways. Moreover, gs (and also s) satisfies properties desirable for calculi of explicit substitutions and generalized reductions. In particular, we show that gs preserves strong normalization, is a conservative extension of g, and simulates fireduction of g and the classical calculus. Furthermore, we study the simply typed versions of s and gs, and show that welltyped terms are strongly normalizing and that other properties,...
Telescopic mappings in typed lambda calculus
 Information and Computation
, 1991
"... The paper develops notation for strings of abstracters in typed lambda calculus, and shows how to treat them more or less as single abstracters. 0 1991 Academic Press. Inc. 1. ..."
Abstract

Cited by 13 (0 self)
 Add to MetaCart
The paper develops notation for strings of abstracters in typed lambda calculus, and shows how to treat them more or less as single abstracters. 0 1991 Academic Press. Inc. 1.
Contextsensitive Conditional Expression Reduction Systems
 In Proc. of the International Workshop on Graph Rewriting and Computation, SEGRAGRA'95
, 1995
"... We introduce Contextsensitive Conditional Expression Reduction Systems (CERS) by extending and generalizing the notion of conditional TRS to the higher order case. We justify our framework in two ways. First, we define orthogonality for CERSs and show that the usual results for orthogonal systems ..."
Abstract

Cited by 13 (4 self)
 Add to MetaCart
We introduce Contextsensitive Conditional Expression Reduction Systems (CERS) by extending and generalizing the notion of conditional TRS to the higher order case. We justify our framework in two ways. First, we define orthogonality for CERSs and show that the usual results for orthogonal systems (finiteness of developments, confluence, permutation equivalence) carry over immediately. This can be used e.g. to infer confluence from the subject reduction property in several typed calculi possibly enriched with patternmatching definitions. Second, we express several proof and transition systems as CERSs. In particular, we give encodings of Hilbertstyle proof systems, Gentzenstyle sequentcalculi, rewrite systems with rule priorities, and the ßcalculus into CERSs. This last encoding is an (important) example of real contextsensitive rewriting. 1 Introduction A term rewriting system is a pair consisting of an alphabet and a set of rewrite rules. The alphabet is used freely to gene...
HigherOrder Families
 In International Conference on Rewriting Techniques and Applications '96, LNCS
, 1996
"... A redex family is a set of redexes which are `created in the same way'. Families specify which redexes should be shared in any socalled optimal implementation of a rewriting system. We formalise the notion of family for orthogonal higherorder term rewriting systems (OHRSs). In order to comfor ..."
Abstract

Cited by 13 (2 self)
 Add to MetaCart
A redex family is a set of redexes which are `created in the same way'. Families specify which redexes should be shared in any socalled optimal implementation of a rewriting system. We formalise the notion of family for orthogonal higherorder term rewriting systems (OHRSs). In order to comfort our formalisation of the intuitive concept of family, we actually provide three conceptually different formalisations, via labelling, extraction and zigzag and show them to be equivalent. This generalises the results known from literature and gives a firm theoretical basis for the optimal implementation of OHRSs. 1. Introduction A computation of a result is optimal if its cost is minimal among all computations of the result. Taking rewrite steps as computational units the cost of a rewrite sequence is simply its length. Given a rewrite system the question then is: does an effective optimal strategy exist for it? In the case of lambda calculus, a discouraging result was obtained in [BBKV76]: th...
The theory of calculi with explicit substitutions revisited
 CSL 2007
, 2007
"... Calculi with explicit substitutions (ES) are widely used in different areas of computer science. Complex systems with ES were developed these last 15 years to capture the good computational behaviour of the original systems (with metalevel substitutions) they were implementing. In this paper we fi ..."
Abstract

Cited by 11 (1 self)
 Add to MetaCart
(Show Context)
Calculi with explicit substitutions (ES) are widely used in different areas of computer science. Complex systems with ES were developed these last 15 years to capture the good computational behaviour of the original systems (with metalevel substitutions) they were implementing. In this paper we first survey previous work in the domain by pointing out the motivations and challenges that guided the development of such calculi. Then we use very simple technology to establish a general theory of explicit substitutions for the lambdacalculus which enjoys fundamental properties such as simulation of onestep betareduction, confluence on metaterms, preservation of betastrong normalisation, strong normalisation of typed terms and full composition. The calculus also admits a natural translation into Linear Logic’s proofnets.