Results 1  10
of
214
Efficient compressive sensing with determinstic guarantees using expander graphs
 IEEE Information Theory Workshop
, 2007
"... Abstract—Compressive sensing is an emerging technology which can recover a sparse signal vector of dimension n via a much smaller number of measurements than n. However, the existing compressive sensing methods may still suffer from relatively high recovery complexity, such as O(n3), or can only wo ..."
Abstract

Cited by 82 (9 self)
 Add to MetaCart
(Show Context)
Abstract—Compressive sensing is an emerging technology which can recover a sparse signal vector of dimension n via a much smaller number of measurements than n. However, the existing compressive sensing methods may still suffer from relatively high recovery complexity, such as O(n3), or can only work efficiently when the signal is super sparse, sometimes without deterministic performance guarantees. In this paper, we propose a compressive sensing scheme with deterministic performance guarantees using expandergraphsbased measurement matrices and show that the signal recovery can be achieved with complexity O(n) even if the number of nonzero elements k grows linearly with n. We also investigate compressive sensing for approximately sparse signals using this new method. Moreover, explicit constructions of the considered expander graphs exist. Simulation results are given to show the performance and complexity of the new method. I.
The efficiency of resolution and DavisPutnam procedures
 SIAM Journal on Computing
, 1999
"... We consider several problems related to the use of resolutionbased methods for determining whether a given boolean formula in conjunctive normal form is satisfiable. First, building on work of Clegg, Edmonds and Impagliazzo, we give an algorithm for satisfiability that when given an unsatisfiabl ..."
Abstract

Cited by 67 (1 self)
 Add to MetaCart
(Show Context)
We consider several problems related to the use of resolutionbased methods for determining whether a given boolean formula in conjunctive normal form is satisfiable. First, building on work of Clegg, Edmonds and Impagliazzo, we give an algorithm for satisfiability that when given an unsatisfiable formula of F finds a resolution proof of F , and the runtime of our algorithm is nontrivial as a function of the size of the shortest resolution proof of F . Next we investigate a class of backtrack search algorithms, commonly known as DavisPutnam procedures and provide the first averagecase complexity analysis for their behavior on random formulas. In particular, for a simple algorithm in this class, called ordered DLL we prove that the running time of the algorithm on a randomly generated kCNF formula with n variables and m clauses is 2 Q(n(n/m) 1/(k2) ) with probability 1  o(1). Finally, we give new lower bounds on res(F), the size of the smallest resolution refutation ...
Space Bounds for Resolution
, 1999
"... We introduce a new way to measure the space needed in resolution refutations of CNF formulas in propositional logic. With the former definition [11] the space required for the resolution of any unsatisfiable formula in CNF is linear in the number of clauses. The new definition allows a much finer ..."
Abstract

Cited by 63 (3 self)
 Add to MetaCart
We introduce a new way to measure the space needed in resolution refutations of CNF formulas in propositional logic. With the former definition [11] the space required for the resolution of any unsatisfiable formula in CNF is linear in the number of clauses. The new definition allows a much finer analysis of the space in the refutation, ranging from constant to linear space. Moreover, the new definition allows to relate the space needed in a resolution proof of a formula to other well studied complexity measures. It coincides with the complexity of a pebble game in the resolution graphs of a formula, and as we show, has relationships to the size of the refutation. We also give upper and lower bounds on the space needed for the resolution of unsatisfiable formulas. We show that Tseitin formulas associated to a certain kind of expander graphs of n nodes need resolution space n \Gamma c for some constant c. Measured on the number of clauses, this result is the best possible. We also show that the formulas expressing the general Pigeonhole Principle with n holes and more than n pigeons, need space n + 1 independently of the number of pigeons. Since a matching space upper bound of n + 1 for these formulas exist, the obtained bound is exact. We also point to a possible connection between resolution space and resolution width, another measure for the complexity of resolution refutations. 3 1
Stochastic Boolean Satisfiability
 Journal of Automated Reasoning
, 2000
"... . Satisfiability problems and probabilistic models are core topics of artificial intelligence and computer science. This paper looks at the rich intersection between these two areas, opening the door for the use of satisfiability approaches in probabilistic domains. The paper examines a generic stoc ..."
Abstract

Cited by 63 (9 self)
 Add to MetaCart
. Satisfiability problems and probabilistic models are core topics of artificial intelligence and computer science. This paper looks at the rich intersection between these two areas, opening the door for the use of satisfiability approaches in probabilistic domains. The paper examines a generic stochastic satisfiability problem, SSat, which can function for probabilistic domains as Sat does for deterministic domains. It shows the connection between SSat and well studied problems in belief network inference and planning under uncertainty, and defines algorithms, both systematic and stochastic, for solving SSat instances. These algorithms are validated on random SSat formulae generated under the fixedclause model. In spite of the large complexity gap between SSat (PSPACE) and Sat (NP), the paper suggests that much of what we've learned about Sat transfers to the probabilistic domain. 1. Introduction There has been a recent focus in artificial intelligence (AI) on solving problems exh...
Resolution is Not Automatizable Unless W[P] is Tractable
 IN 42ND ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE
, 2001
"... We show that neither Resolution nor treelike Resolution is automatizable unless the class W[P] from the hierarchy of parameterized problems is fixedparameter tractable by randomized algorithms with onesided error. ..."
Abstract

Cited by 57 (2 self)
 Add to MetaCart
We show that neither Resolution nor treelike Resolution is automatizable unless the class W[P] from the hierarchy of parameterized problems is fixedparameter tractable by randomized algorithms with onesided error.
NearOptimal Separation of Treelike and General Resolution
 Electronic Colloquium in Computation Complexity
, 2000
"... We present the best known separation between treelike and general resolution, improving on the recent exp(n ) separation of [BEGJ98]. ..."
Abstract

Cited by 57 (5 self)
 Add to MetaCart
(Show Context)
We present the best known separation between treelike and general resolution, improving on the recent exp(n ) separation of [BEGJ98].
A sharp threshold in proof complexity
 PROCEEDINGS OF STOC 2001
, 2001
"... We give the first example of a sharp threshold in proof complexity. More precisely, we show that for any sufficiently small � and � � �, random formulas consisting of 2clauses and 3clauses, which are known to be unsatisfiable almost certainly, almost certainly require resolution and DavisPutnam ..."
Abstract

Cited by 54 (14 self)
 Add to MetaCart
We give the first example of a sharp threshold in proof complexity. More precisely, we show that for any sufficiently small � and � � �, random formulas consisting of 2clauses and 3clauses, which are known to be unsatisfiable almost certainly, almost certainly require resolution and DavisPutnam proofs of unsatisfiability of exponential size, whereas it is easily seen that random formulas with 2clauses (and 3clauses) have linear size proofs of unsatisfiability almost certainly. A consequence of our result also yields the first proof that typical random 3CNF formulas at ratios below the generally accepted range of the satisfiability threshold (and thus expected to be satisfiable almost certainly) cause natural DavisPutnam algorithms to take exponential time to find satisfying assignments.
A Combinatorial Characterization of Resolution Width
 In 18th IEEE Conference on Computational Complexity
, 2002
"... We provide a characterization of the resolution width introduced in the context of propositional proof complexity in terms of the existential pebble game introduced in the context of finite model theory. The characterization is tight and purely combinatorial. Our first application of this result i ..."
Abstract

Cited by 50 (5 self)
 Add to MetaCart
(Show Context)
We provide a characterization of the resolution width introduced in the context of propositional proof complexity in terms of the existential pebble game introduced in the context of finite model theory. The characterization is tight and purely combinatorial. Our first application of this result is a surprising proof that the minimum space of refuting a 3CNF formula is always bounded from below by the minimum width of refuting it (minus 3). This solves a wellknown open problem. The second application is the unification of several width lower bound arguments, and a new width lower bound for the Dense Linear Order Principle. Since we also show that this principle has resolution refutations of polynomial size, this provides yet another example showing that the sizewidth relationship is tight.
Resolution Lower Bounds for the Weak Pigeonhole Principle
, 2001
"... We prove that any Resolution proof for the weak pigeon hole principle, with n holes and any number of pigeons, is of ), (for some global constant ffl ? 0). One corollary is that a certain propositional formulation of the statement NP 6ae P=poly does not have short Resolution proofs. ..."
Abstract

Cited by 48 (3 self)
 Add to MetaCart
We prove that any Resolution proof for the weak pigeon hole principle, with n holes and any number of pigeons, is of ), (for some global constant ffl ? 0). One corollary is that a certain propositional formulation of the statement NP 6ae P=poly does not have short Resolution proofs.
A Switching Lemma for Small Restrictions and Lower Bounds for kDNF Resolution (Extended Abstract)
 SIAM J. Comput
, 2002
"... We prove a new switching lemma that works for restrictions that set only a small fraction of the variables and is applicable to DNFs with small conjunctions. We use this to prove lower bounds for the Res(k) propositional proof system, an extension of resolution which works with kDNFs instead of cla ..."
Abstract

Cited by 48 (10 self)
 Add to MetaCart
(Show Context)
We prove a new switching lemma that works for restrictions that set only a small fraction of the variables and is applicable to DNFs with small conjunctions. We use this to prove lower bounds for the Res(k) propositional proof system, an extension of resolution which works with kDNFs instead of clauses. We also obtain an exponential separation between depth d circuits of k + 1.