Results 1  10
of
10
On the Computational Complexity of Upward and Rectilinear Planarity Testing (Extended Abstract)
, 1994
"... A directed graph is upward planar if it can be drawn in the plane such that every edge is a monotonically increasing curve in the vertical direction, and no two edges cross. An undirected graph is rectilinear planar if it can be drawn in the plane such that every edge is a horizontal or vertical se ..."
Abstract

Cited by 86 (4 self)
 Add to MetaCart
A directed graph is upward planar if it can be drawn in the plane such that every edge is a monotonically increasing curve in the vertical direction, and no two edges cross. An undirected graph is rectilinear planar if it can be drawn in the plane such that every edge is a horizontal or vertical segment, and no two edges cross. Testing upward planarity and rectilinear planarity are fundamental problems in the effective visualization of various graph and network structures. In this paper we show that upward planarity testing and rectilinear planarity testing are NPcomplete problems. We also show that it is NPhard to approximate the minimum number of bends in a planar orthogonal drawing of an nvertex graph with an O(n 1\Gammaffl ) error, for any ffl ? 0.
A Better Heuristic for Orthogonal Graph Drawings
 COMPUT. GEOM. THEORY APPL
, 1998
"... An orthogonal drawing of a graph is an embedding in the plane such that all edges are drawn as sequences of horizontal and vertical segments. We present a linear time and space algorithm to draw any connected graph orthogonally on a grid of size n \Theta n with at most 2n + 2 bends. Each edge is ben ..."
Abstract

Cited by 65 (6 self)
 Add to MetaCart
An orthogonal drawing of a graph is an embedding in the plane such that all edges are drawn as sequences of horizontal and vertical segments. We present a linear time and space algorithm to draw any connected graph orthogonally on a grid of size n \Theta n with at most 2n + 2 bends. Each edge is bent at most twice. In particular for nonplanar and nonbiconnected planar graphs, this is a big improvement. The algorithm is very simple, easy to implement, and it handles both planar and nonplanar graphs at the same time.
Algorithms for AreaEfficient Orthogonal Drawings
 Computational Geometry: Theory and Applications
, 1996
"... An orthogonal drawing of a graph is a drawing such that nodes are placed on grid points and edges are drawn as sequences of vertical and horizontal segments. In this paper we present linear time algorithms that produce orthogonal drawings of graphs with n nodes. If the maximum degree is four, then t ..."
Abstract

Cited by 17 (4 self)
 Add to MetaCart
(Show Context)
An orthogonal drawing of a graph is a drawing such that nodes are placed on grid points and edges are drawn as sequences of vertical and horizontal segments. In this paper we present linear time algorithms that produce orthogonal drawings of graphs with n nodes. If the maximum degree is four, then the drawing produced by our first algorithm needs area at most (roughly) 0:76n 2 , and introduces at most 2n + 2 bends. Also, each edge of such a drawing has at most two bends. Our algorithm is based on forming and placing pairs of vertices of the graph. If the maximum degree is three, then the drawing produced by our second algorithm needs at most (roughly) 1 4 n 2 area and, if the graph is biconnected, at most b n 2 c + 3 bends. These upper bounds match the upper bounds known for planar graphs of maximum degree 3. This algorithm produces optimal drawings (within a constant of 2) with respect to the number of bends, since there is a lower bound of n 2 + 1 in the number of bends fo...
An Experimental Comparison of Three Graph Drawing Algorithms (Extended Abstract)
, 1995
"... In this paper we present an extensive experimental study... ..."
Abstract

Cited by 16 (5 self)
 Add to MetaCart
In this paper we present an extensive experimental study...
Issues in Interactive Orthogonal Graph Drawing
, 1995
"... . Several applications require human interaction during the design process. The user is given the ability to alter the graph as the design progresses. Interactive Graph Drawing gives the user the ability to dynamically interact with the drawing. In this paper we discuss features that are essential f ..."
Abstract

Cited by 6 (1 self)
 Add to MetaCart
. Several applications require human interaction during the design process. The user is given the ability to alter the graph as the design progresses. Interactive Graph Drawing gives the user the ability to dynamically interact with the drawing. In this paper we discuss features that are essential for an interactive drawing system. We also describe some possible interactive drawing scenaria and present results on two of them. In these results we assume that the underline drawing is always orthogonal and the maximum degree of any vertex is at most four at the end of any update operation. 1 Introduction Graphs have been extensively used to represent various important concepts or objects. Examples of such objects include parallel computer architectures, networks, state graphs, entityrelationship diagrams, subroutine call graphs, automata, dataflow graphs, Petri nets, VLSI circuits, etc. In all of these cases, we require that the graph be represented (or drawn) in the plane so that we c...
Computing Orthogonal Drawings in a Variable Embedding Setting
 In [57
, 1998
"... This paper addresses the classical graph drawing problem of designing an algorithm that computes an orthogonal representation with the minimum number of bends. The algorithm receives as input a 4planar graph with a given ordering of the edges around the vertices and is allowed to change such orderi ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
This paper addresses the classical graph drawing problem of designing an algorithm that computes an orthogonal representation with the minimum number of bends. The algorithm receives as input a 4planar graph with a given ordering of the edges around the vertices and is allowed to change such ordering to reach the optimum. While the general problem has been shown to be NP complete [10], polynomial time algorithms have been devised for graphs whose vertex degree is at most three [5]. We show the first algorithm whose time complexity is exponential only in the number of vertices of degree four of the input graph. This settles a problem left as open in [6]. Our algorithm is further extended to handle graphs with vertices of degree higher than four. The analysis of the algorithm is supported by several experiments on the structure of a large set of input graphs. 1 Introduction and Overview Graph drawing is concerned with the design of methods for the automatic display of graphs so as to ...
Where to Draw the Line
, 1996
"... Graph Drawing (also known as Graph Visualization) tackles the problem of representing graphs on a visual medium such as computer screen, printer etc. Many applications such as software engineering, data base design, project planning, VLSI design, multimedia etc., have data structures that can be rep ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
(Show Context)
Graph Drawing (also known as Graph Visualization) tackles the problem of representing graphs on a visual medium such as computer screen, printer etc. Many applications such as software engineering, data base design, project planning, VLSI design, multimedia etc., have data structures that can be represented as graphs. With the ever increasing complexity of these and new applications, and availability of hardware supporting visualization, the area of graph drawing is increasingly getting more attention from both practitioners and researchers. In a typical drawing of a graph, the vertices are represented as symbols such as circles, dots or boxes, etc., and the edges are drawn as continuous curves joining their end points. Often, the edges are simply drawn as (straight or poly) lines joining their end points (and hence the title of this thesis), followed by an optional transformation into smooth curves. The goal of research in graph drawing is to develop techniques for constructing good...
Efficient Algorithms for Drawing Planar Graphs
, 1999
"... x 1 Introduction 1 1.1 Historical Background . . .............................. 4 1.2 Drawing Styles . ................................... 4 1.2.1 Polyline drawings .............................. 5 1.2.2 Planar drawings ............................... 5 1.2.3 Straight line drawings ................. ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
x 1 Introduction 1 1.1 Historical Background . . .............................. 4 1.2 Drawing Styles . ................................... 4 1.2.1 Polyline drawings .............................. 5 1.2.2 Planar drawings ............................... 5 1.2.3 Straight line drawings ............................ 6 1.2.4 Orthogonal drawings . . ........................... 7 1.2.5 Grid drawings ................................ 8 1.3 Properties of Drawings ................................ 9 1.4 Scope of this Thesis .................................. 10 1.4.1 Rectangular drawings . . . ......................... 11 1.4.2 Orthogonal drawings . . ........................... 12 1.4.3 Boxrectangular drawings ........................... 14 1.4.4 Convex drawings . . ............................. 16 1.5 Summary ....................................... 16 2 Preliminaries 20 2.1 Basic Terminology .................................. 20 2.1.1 Graphs and Multigraphs ........................... 20 i CO...
A LinearTime Algorithm for BendOptimal Orthogonal Drawings of Biconnected Cubic Plane Graphs
"... Abstract: An orthogonal drawing of a plane graph $G $ is a drawing of $G $ with the given planar embedding in which each vertex is mapped to a point, each edge is drawn as a sequence of alternate horizontal and vertical line segments, and any two edges do not cross except at their common end. Observ ..."
Abstract
 Add to MetaCart
Abstract: An orthogonal drawing of a plane graph $G $ is a drawing of $G $ with the given planar embedding in which each vertex is mapped to a point, each edge is drawn as a sequence of alternate horizontal and vertical line segments, and any two edges do not cross except at their common end. Observe that only a planar graph with the maximum degree four or less has an orthogonal drawing. The best known algorithm to find an orthogonal drawing runs in time $O(n^{7/4_{\sqrt{\log n})}} $ for any plane graph with $n $ vertices. In this paper we give a lineartime algorithm to find an orthogonal drawing of a given biconnected cubic plane graph with the minimum number of bends.