Results 1  10
of
62
Dynamic Logic
 Handbook of Philosophical Logic
, 1984
"... ed to be true under the valuation u iff there exists an a 2 N such that the formula x = y is true under the valuation u[x=a], where u[x=a] agrees with u everywhere except x, on which it takes the value a. This definition involves a metalogical operation that produces u[x=a] from u for all possibl ..."
Abstract

Cited by 825 (8 self)
 Add to MetaCart
ed to be true under the valuation u iff there exists an a 2 N such that the formula x = y is true under the valuation u[x=a], where u[x=a] agrees with u everywhere except x, on which it takes the value a. This definition involves a metalogical operation that produces u[x=a] from u for all possible values a 2 N. This operation becomes explicit in DL in the form of the program x := ?, called a nondeterministic or wildcard assignment. This is a rather unconventional program, since it is not effective; however, it is quite useful as a descriptive tool. A more conventional way to obtain a square root of y, if it exists, would be the program x := 0 ; while x < y do x := x + 1: (1) In DL, such programs are firstclass objects on a par with formulas, complete with a collection of operators for forming compound programs inductively from a basis of primitive programs. To discuss the effect of the execution of a program on the truth of a formula ', DL uses a modal construct <>', which
Abstract interpretation frameworks
 Journal of Logic and Computation
, 1992
"... We introduce abstract interpretation frameworks which are variations on the archetypal framework using Galois connections between concrete and abstract semantics, widenings and narrowings and are obtained by relaxation of the original hypotheses. We consider various ways of establishing the correctn ..."
Abstract

Cited by 240 (23 self)
 Add to MetaCart
We introduce abstract interpretation frameworks which are variations on the archetypal framework using Galois connections between concrete and abstract semantics, widenings and narrowings and are obtained by relaxation of the original hypotheses. We consider various ways of establishing the correctness of an abstract interpretation depending on how the relation between the concrete and abstract semantics is defined. We insist upon those correspondences allowing for the inducing of the approximate abstract semantics from the concrete one. Furthermore we study various notions interpretation.
Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpretation
, 2002
"... We construct a hierarchy of semantics by successive abstract interpretations. Starting from the maximal trace semantics of a transition system, we derive the bigstep semantics, termination and nontermination semantics, Plotkin’s natural, Smyth’s demoniac and Hoare’s angelic relational semantics and ..."
Abstract

Cited by 98 (17 self)
 Add to MetaCart
We construct a hierarchy of semantics by successive abstract interpretations. Starting from the maximal trace semantics of a transition system, we derive the bigstep semantics, termination and nontermination semantics, Plotkin’s natural, Smyth’s demoniac and Hoare’s angelic relational semantics and equivalent nondeterministic denotational semantics (with alternative powerdomains to the EgliMilner and Smyth constructions), D. Scott’s deterministic denotational semantics, the generalized and Dijkstra’s conservative/liberal predicate transformer semantics, the generalized/total and Hoare’s partial correctness axiomatic semantics and the corresponding proof methods. All the semantics are presented in a uniform fixpoint form and the correspondences between these semantics are established through composable Galois connections, each semantics being formally calculated by abstract interpretation of a more concrete one using Kleene and/or Tarski
Completing the Temporal Picture
, 1991
"... The paper presents a relatively complete proof system for proving the validity of temporal properties of reactive programs. The presented proof system improves on previous temporal systems, in that it reduces the validity of program properties into pure assertional reasoning, not involving additiona ..."
Abstract

Cited by 74 (16 self)
 Add to MetaCart
The paper presents a relatively complete proof system for proving the validity of temporal properties of reactive programs. The presented proof system improves on previous temporal systems, in that it reduces the validity of program properties into pure assertional reasoning, not involving additional temporal reasoning. The proof system is based on the classification of temporal properties according to the Borel hierarchy, providing appropriate proof rules for the classes of safety, response, and reactivity properties.
Temporal Concurrent Constraint Programming: Denotation, Logic and Applications
, 2002
"... The tcc model is a formalism for reactive concurrent constraint programming. We present a model of temporal concurrent constraint programming which adds to tcc the capability of modeling asynchronous and nondeterministic timed behavior. We call this tcc extension the ntcc calculus. We also give a d ..."
Abstract

Cited by 68 (24 self)
 Add to MetaCart
The tcc model is a formalism for reactive concurrent constraint programming. We present a model of temporal concurrent constraint programming which adds to tcc the capability of modeling asynchronous and nondeterministic timed behavior. We call this tcc extension the ntcc calculus. We also give a denotational semantics for the strongestpostcondition of ntcc processes and, based on this semantics, we develop a proof system for lineartemporal properties of these processes. The expressiveness of ntcc is illustrated by modeling cells, timed systems such as RCX controllers, multiagent systems such as the Predator /Prey game, and musical applications such as generation of rhythms patterns and controlled improvisation. 1
The origins of structural operational semantics
 Journal of Logic and Algebraic Programming
, 2004
"... We review the origins of structural operational semantics. The main publication ‘A Structural Approach to Operational Semantics, ’ also known as the ‘Aarhus Notes, ’ appeared in 1981 [G.D. Plotkin, A structural approach to operational semantics, DAIMI FN19, Computer Science Department, Aarhus Unive ..."
Abstract

Cited by 64 (0 self)
 Add to MetaCart
We review the origins of structural operational semantics. The main publication ‘A Structural Approach to Operational Semantics, ’ also known as the ‘Aarhus Notes, ’ appeared in 1981 [G.D. Plotkin, A structural approach to operational semantics, DAIMI FN19, Computer Science Department, Aarhus University, 1981]. The development of the ideas dates back to the early 1970s, involving many people and building on previous work on programming languages and logic. The former included abstract syntax, the SECD machine, and the abstract interpreting machines of the Vienna school; the latter included the λcalculus and formal systems. The initial development of structural operational semantics was for simple functional languages, more or less variations of the λcalculus; after that the ideas were gradually extended to include languages with parallel features, such as Milner’s CCS. This experience set the ground for a more systematic exposition, the subject of an invited course of lectures at Aarhus University; some of these appeared in print as the 1981 Notes. We discuss the content of these lectures and some related considerations such as ‘small state’ versus ‘grand state, ’ structural versus compositional semantics, the influence of the Scott–Strachey approach to denotational semantics, the treatment of recursion and jumps, and static semantics. We next discuss relations with other work and some immediate further development. We conclude with an account of an old, previously unpublished, idea: an alternative, perhaps more readable, graphical presentation of systems of rules for operational semantics.
Precise Interprocedural Analysis through Linear Algebra
, 2004
"... We apply linear algebra techniques to precise interprocedural dataflow analysis. Specifically, we describe analyses that determine for each program point identities that are valid among the program variables whenever control reaches that program point. Our analyses fully interpret assignment stateme ..."
Abstract

Cited by 62 (10 self)
 Add to MetaCart
We apply linear algebra techniques to precise interprocedural dataflow analysis. Specifically, we describe analyses that determine for each program point identities that are valid among the program variables whenever control reaches that program point. Our analyses fully interpret assignment statements with affine expressions on the right hand side while considering other assignments as nondeterministic and ignoring conditions at branches. Under this abstraction, the analysis computes the set of all affine relations and, more generally, all polynomial relations of bounded degree precisely. The running time of our algorithms is linear in the program size and polynomial in the number of occurring variables. We also show how to deal with affine preconditions and local variables and indicate how to handle parameters and return values of procedures.
Verification of Concurrent Programs: The AutomataTheoretic Framework
 Annals of Pure and Applied Logic
, 1987
"... We present an automatatheoretic framework to the verification of concurrent and nondeterministic programs. The basic idea is that to verify that a program P is correct one writes a program A that receives the computation of P as input and diverges only on incorrect computations of P . Now P is c ..."
Abstract

Cited by 47 (3 self)
 Add to MetaCart
We present an automatatheoretic framework to the verification of concurrent and nondeterministic programs. The basic idea is that to verify that a program P is correct one writes a program A that receives the computation of P as input and diverges only on incorrect computations of P . Now P is correct if and only if a program PA , obtained by combining P and A, terminates. We formalize this idea in a framework of !automata with a recursive set of states. This unifies previous works on verification of fair termination and verification of temporal properties. 1 Introduction In this paper we present an automatatheoretic framework that unifies several trends in the area of concurrent program verification. The trends are temporal logic, model checking, automata theory, and fair termination. Let us start with a survey of these trends. In 1977 Pnueli suggested the use of temporal logic in the verification of concurrent programs [Pn77]. The basic motivation is that in the verificat...
Full abstraction for a shared variable parallel language
 In Proceedings, 8th Annual IEEE Symposium on Logic in Computer Science
, 1993
"... We give a new denotational semantics for a shared variable parallel programming language and prove full abstraction: the semantics gives identical meanings to commands if and only if they induce the same partial correctness behavior in all program contexts. The meaning of a command is a set of “tran ..."
Abstract

Cited by 35 (2 self)
 Add to MetaCart
We give a new denotational semantics for a shared variable parallel programming language and prove full abstraction: the semantics gives identical meanings to commands if and only if they induce the same partial correctness behavior in all program contexts. The meaning of a command is a set of “transition traces”, which record the ways in which a command may interact with and be affected by its environment. We show how to modify the semantics to incorporate new program constructs, to allow for different levels of granularity or atomicity, and to model fair infinite computation, in each case achieving full abstraction with respect to an appropriate notion of program behavior. 1
A Fully Abstract Game Semantics for Finite Nondeterminism
 In Proceedings of the Fourteenth Annual Symposium on Logic in Computer Science, LICS ’99. IEEE Computer
, 1999
"... A game semantics of finite nondeterminism is proposed. In this model, a strategy may make a choice between different moves in a given situation; moreover, strategies carry extra information about their possible divergent behaviour. A Cartesian closed category is built and a model of a simple, higher ..."
Abstract

Cited by 31 (3 self)
 Add to MetaCart
A game semantics of finite nondeterminism is proposed. In this model, a strategy may make a choice between different moves in a given situation; moreover, strategies carry extra information about their possible divergent behaviour. A Cartesian closed category is built and a model of a simple, higherorder nondeterministic imperative language is given. This model is shown to be fully abstract, with respect to an equivalence based on both safety and liveness properties, by means of a factorization theorem which states that every nondeterministic strategy is the composite of a deterministic strategy with a nondeterministic oracle. 1 Introductory remarks Nondeterminism, the notion that the behaviour of a computer system need not be completely determined by the behaviour of its environment, is a valuable abstraction in the analysis of programs. An unreliable hardware component, governed by laws of physics too complex to take into account, can be understood as a nondeterministic entity; mul...