Results 1  10
of
1,617
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 891 (18 self)
 Add to MetaCart
Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear measurements do we need to recover objects from this class to within accuracy ɛ? This paper shows that if the objects of interest are sparse or compressible in the sense that the reordered entries of a signal f ∈ F decay like a powerlaw (or if the coefficient sequence of f in a fixed basis decays like a powerlaw), then it is possible to reconstruct f to within very high accuracy from a small number of random measurements. typical result is as follows: we rearrange the entries of f (or its coefficients in a fixed basis) in decreasing order of magnitude f  (1) ≥ f  (2) ≥... ≥ f  (N), and define the weakℓp ball as the class F of those elements whose entries obey the power decay law f  (n) ≤ C · n −1/p. We take measurements 〈f, Xk〉, k = 1,..., K, where the Xk are Ndimensional Gaussian
Active Contours without Edges
, 2001
"... In this paper, we propose a new model for active contours to detect objects in a given image, based on techniques of curve evolution, MumfordShah functional for segmentation and level sets. Our model can detect objects whose boundaries are not necessarily defined by gradient. We minimize an energy ..."
Abstract

Cited by 868 (36 self)
 Add to MetaCart
In this paper, we propose a new model for active contours to detect objects in a given image, based on techniques of curve evolution, MumfordShah functional for segmentation and level sets. Our model can detect objects whose boundaries are not necessarily defined by gradient. We minimize an energy which can be seen as a particular case of the minimal partition problem. In the level set formulation, the problem becomes a "meancurvature flow"like evolving the active contour, which will stop on the desired boundary. However, the stopping term does not depend on the gradient of the image, as in the classical active contour models, but is instead related to a particular segmentation of the image. We will give a numerical algorithm using finite differences. Finally, we will present various experimental results and in particular some examples for which the classical snakes methods based on the gradient are not applicable. Also, the initial curve can be anywhere in the image, and interior contours are automatically detected.
Image Inpainting
, 2000
"... Inpainting, the technique of modifying an image in an undetectable form, is as ancient as art itself. The goals and applications of inpainting are numerous, from the restoration of damaged paintings and photographs to the removal/replacement of selected objects. In this paper, we introduce a novel a ..."
Abstract

Cited by 402 (23 self)
 Add to MetaCart
Inpainting, the technique of modifying an image in an undetectable form, is as ancient as art itself. The goals and applications of inpainting are numerous, from the restoration of damaged paintings and photographs to the removal/replacement of selected objects. In this paper, we introduce a novel algorithm for digital inpainting of still images that attempts to replicate the basic techniques used by professional restorators. After the user selects the regions to be restored, the algorithm automatically fillsin these regions with information surrounding them. The fillin is done in such a way that isophote lines arriving at the regions ’ boundaries are completed inside. In contrast with previous approaches, the technique here introduced does not require the user to specify where the novel information comes from. This is automatically done (and in a fast way), thereby allowing to simultaneously fillin numerous regions containing completely different structures and surrounding backgrounds. In addition, no limitations are imposed on the topology of the region to be inpainted. Applications of this technique include the restoration of old photographs and damaged film; removal of superimposed text like dates, subtitles, or publicity; and the removal of entire objects from the image like microphones or wires in special effects.
An Algorithm for Total Variation Minimization and Applications
, 2004
"... We propose an algorithm for minimizing the total variation of an image, and provide a proof of convergence. We show applications to image denoising, zooming, and the computation of the mean curvature motion of interfaces. ..."
Abstract

Cited by 386 (9 self)
 Add to MetaCart
We propose an algorithm for minimizing the total variation of an image, and provide a proof of convergence. We show applications to image denoising, zooming, and the computation of the mean curvature motion of interfaces.
High Accuracy Optical Flow Estimation Based on a Theory for Warping
, 2004
"... We study an energy functional for computing optical flow that combines three assumptions: a brightness constancy assumption, a gradient constancy assumption, and a discontinuitypreserving spatiotemporal smoothness constraint. ..."
Abstract

Cited by 331 (39 self)
 Add to MetaCart
(Show Context)
We study an energy functional for computing optical flow that combines three assumptions: a brightness constancy assumption, a gradient constancy assumption, and a discontinuitypreserving spatiotemporal smoothness constraint.
Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems
 IEEE Journal of Selected Topics in Signal Processing
, 2007
"... Abstract—Many problems in signal processing and statistical inference involve finding sparse solutions to underdetermined, or illconditioned, linear systems of equations. A standard approach consists in minimizing an objective function which includes a quadratic (squared ℓ2) error term combined wi ..."
Abstract

Cited by 318 (15 self)
 Add to MetaCart
(Show Context)
Abstract—Many problems in signal processing and statistical inference involve finding sparse solutions to underdetermined, or illconditioned, linear systems of equations. A standard approach consists in minimizing an objective function which includes a quadratic (squared ℓ2) error term combined with a sparsenessinducing (ℓ1) regularization term.Basis pursuit, the least absolute shrinkage and selection operator (LASSO), waveletbased deconvolution, and compressed sensing are a few wellknown examples of this approach. This paper proposes gradient projection (GP) algorithms for the boundconstrained quadratic programming (BCQP) formulation of these problems. We test variants of this approach that select the line search parameters in different ways, including techniques based on the BarzilaiBorwein method. Computational experiments show that these GP approaches perform well in a wide range of applications, often being significantly faster (in terms of computation time) than competing methods. Although the performance of GP methods tends to degrade as the regularization term is deemphasized, we show how they can be embedded in a continuation scheme to recover their efficient practical performance. A. Background I.
Robust Anisotropic Diffusion
, 1998
"... Relations between anisotropic diffusion and robust statistics are described in this paper. Specifically, we show that anisotropic diffusion can be seen as a robust estimation procedure that estimates a piecewise smooth image from a noisy input image. The "edgestopping" function in the ani ..."
Abstract

Cited by 302 (16 self)
 Add to MetaCart
(Show Context)
Relations between anisotropic diffusion and robust statistics are described in this paper. Specifically, we show that anisotropic diffusion can be seen as a robust estimation procedure that estimates a piecewise smooth image from a noisy input image. The "edgestopping" function in the anisotropic diffusion equation is closely related to the error norm and influence function in the robust estimation framework. This connection leads to a new "edgestopping" function based on Tukey's biweight robust estimator, that preserves sharper boundaries than previous formulations and improves the automatic stopping of the diffusion. The robust statistical interpretation also provides a means for detecting the boundaries (edges) between the piecewise smooth regions in an image that has been smoothed with anisotropic diffusion. Additionally, we derive a relationship between anisotropic diffusion and regularization with line processes. Adding constraints on the spatial organization of the ...
A review of image denoising algorithms, with a new one
 Simul
, 2005
"... Abstract. The search for efficient image denoising methods is still a valid challenge at the crossing of functional analysis and statistics. In spite of the sophistication of the recently proposed methods, most algorithms have not yet attained a desirable level of applicability. All show an outstand ..."
Abstract

Cited by 297 (2 self)
 Add to MetaCart
(Show Context)
Abstract. The search for efficient image denoising methods is still a valid challenge at the crossing of functional analysis and statistics. In spite of the sophistication of the recently proposed methods, most algorithms have not yet attained a desirable level of applicability. All show an outstanding performance when the image model corresponds to the algorithm assumptions but fail in general and create artifacts or remove image fine structures. The main focus of this paper is, first, to define a general mathematical and experimental methodology to compare and classify classical image denoising algorithms and, second, to propose a nonlocal means (NLmeans) algorithm addressing the preservation of structure in a digital image. The mathematical analysis is based on the analysis of the “method noise, ” defined as the difference between a digital image and its denoised version. The NLmeans algorithm is proven to be asymptotically optimal under a generic statistical image model. The denoising performance of all considered methods are compared in four ways; mathematical: asymptotic order of magnitude of the method noise under regularity assumptions; perceptualmathematical: the algorithms artifacts and their explanation as a violation of the image model; quantitative experimental: by tables of L 2 distances of the denoised version to the original image. The most powerful evaluation method seems, however, to be the visualization of the method noise on natural images. The more this method noise looks like a real white noise, the better the method.
Stereo matching using belief propagation
, 2003
"... In this paper, we formulate the stereo matching problem as a Markov network and solve it using Bayesian belief propagation. The stereo Markov network consists of three coupled Markov random fields that model the following: a smooth field for depth/disparity, a line process for depth discontinuity, ..."
Abstract

Cited by 272 (3 self)
 Add to MetaCart
(Show Context)
In this paper, we formulate the stereo matching problem as a Markov network and solve it using Bayesian belief propagation. The stereo Markov network consists of three coupled Markov random fields that model the following: a smooth field for depth/disparity, a line process for depth discontinuity, and a binary process for occlusion. After eliminating the line process and the binary process by introducing two robust functions, we apply the belief propagation algorithm to obtain the maximum a posteriori (MAP) estimation in the Markov network. Other lowlevel visual cues (e.g., image segmentation) can also be easily incorporated in our stereo model to obtain better stereo results. Experiments demonstrate that our methods are comparable to the stateoftheart stereo algorithms for many test cases.
Iterative Methods For Total Variation Denoising
 SIAM J. SCI. COMPUT
"... Total Variation (TV) methods are very effective for recovering "blocky", possibly discontinuous, images from noisy data. A fixed point algorithm for minimizing a TVpenalized least squares functional is presented and compared with existing minimization schemes. A variant of the cellcenter ..."
Abstract

Cited by 252 (7 self)
 Add to MetaCart
Total Variation (TV) methods are very effective for recovering "blocky", possibly discontinuous, images from noisy data. A fixed point algorithm for minimizing a TVpenalized least squares functional is presented and compared with existing minimization schemes. A variant of the cellcentered finite difference multigrid method of Ewing and Shen is implemented for solving the (large, sparse) linear subproblems. Numerical results are presented for one and twodimensional examples; in particular, the algorithm is applied to actual data obtained from confocal microscopy.