Results 1  10
of
251
A Singular Value Thresholding Algorithm for Matrix Completion
, 2008
"... This paper introduces a novel algorithm to approximate the matrix with minimum nuclear norm among all matrices obeying a set of convex constraints. This problem may be understood as the convex relaxation of a rank minimization problem, and arises in many important applications as in the task of reco ..."
Abstract

Cited by 225 (13 self)
 Add to MetaCart
This paper introduces a novel algorithm to approximate the matrix with minimum nuclear norm among all matrices obeying a set of convex constraints. This problem may be understood as the convex relaxation of a rank minimization problem, and arises in many important applications as in the task of recovering a large matrix from a small subset of its entries (the famous Netflix problem). Offtheshelf algorithms such as interior point methods are not directly amenable to large problems of this kind with over a million unknown entries. This paper develops a simple firstorder and easytoimplement algorithm that is extremely efficient at addressing problems in which the optimal solution has low rank. The algorithm is iterative and produces a sequence of matrices {X k, Y k} and at each step, mainly performs a softthresholding operation on the singular values of the matrix Y k. There are two remarkable features making this attractive for lowrank matrix completion problems. The first is that the softthresholding operation is applied to a sparse matrix; the second is that the rank of the iterates {X k} is empirically nondecreasing. Both these facts allow the algorithm to make use of very minimal storage space and keep the computational cost of each iteration low. On
Ranksparsity incoherence for matrix decomposition
, 2010
"... Suppose we are given a matrix that is formed by adding an unknown sparse matrix to an unknown lowrank matrix. Our goal is to decompose the given matrix into its sparse and lowrank components. Such a problem arises in a number of applications in model and system identification, and is intractable ..."
Abstract

Cited by 88 (11 self)
 Add to MetaCart
Suppose we are given a matrix that is formed by adding an unknown sparse matrix to an unknown lowrank matrix. Our goal is to decompose the given matrix into its sparse and lowrank components. Such a problem arises in a number of applications in model and system identification, and is intractable to solve in general. In this paper we consider a convex optimization formulation to splitting the specified matrix into its components, by minimizing a linear combination of the ℓ1 norm and the nuclear norm of the components. We develop a notion of ranksparsity incoherence, expressed as an uncertainty principle between the sparsity pattern of a matrix and its row and column spaces, and use it to characterize both fundamental identifiability as well as (deterministic) sufficient conditions for exact recovery. Our analysis is geometric in nature with the tangent spaces to the algebraic varieties of sparse and lowrank matrices playing a prominent role. When the sparse and lowrank matrices are drawn from certain natural random ensembles, we show that the sufficient conditions for exact recovery are satisfied with high probability. We conclude with simulation results on synthetic matrix decomposition problems.
A unified framework for highdimensional analysis of Mestimators with decomposable regularizers
"... ..."
An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems
, 2009
"... ..."
An Accelerated Gradient Method for Trace Norm Minimization
"... We consider the minimization of a smooth loss function regularized by the trace norm of the matrix variable. Such formulation finds applications in many machine learning tasks including multitask learning, matrix classification, and matrix completion. The standard semidefinite programming formulati ..."
Abstract

Cited by 58 (5 self)
 Add to MetaCart
We consider the minimization of a smooth loss function regularized by the trace norm of the matrix variable. Such formulation finds applications in many machine learning tasks including multitask learning, matrix classification, and matrix completion. The standard semidefinite programming formulation for this problem is computationally expensive. In addition, due to the nonsmooth nature of the trace norm, the optimal firstorder blackbox method for solving such class of problems converges as O ( 1 √), where k is the k iteration counter. In this paper, we exploit the special structure of the trace norm, based on which we propose an extended gradient algorithm that converges as O ( 1 k). We further propose an accelerated gradient algorithm, which achieves the optimal convergence rate of O ( 1 k 2) for smooth problems. Experiments on multitask learning problems demonstrate the efficiency of the proposed algorithms. 1.
FINDING STRUCTURE WITH RANDOMNESS: PROBABILISTIC ALGORITHMS FOR CONSTRUCTING APPROXIMATE MATRIX DECOMPOSITIONS
"... Lowrank matrix approximations, such as the truncated singular value decomposition and the rankrevealing QR decomposition, play a central role in data analysis and scientific computing. This work surveys and extends recent research which demonstrates that randomization offers a powerful tool for ..."
Abstract

Cited by 53 (1 self)
 Add to MetaCart
Lowrank matrix approximations, such as the truncated singular value decomposition and the rankrevealing QR decomposition, play a central role in data analysis and scientific computing. This work surveys and extends recent research which demonstrates that randomization offers a powerful tool for performing lowrank matrix approximation. These techniques exploit modern computational architectures more fully than classical methods and open the possibility of dealing with truly massive data sets. This paper presents a modular framework for constructing randomized algorithms that compute partial matrix decompositions. These methods use random sampling to identify a subspace that captures most of the action of a matrix. The input matrix is then compressed—either explicitly or implicitly—to this subspace, and the reduced matrix is manipulated deterministically to obtain the desired lowrank factorization. In many cases, this approach beats its classical competitors in terms of accuracy, speed, and robustness. These claims are supported by extensive numerical experiments and a detailed error analysis. The specific benefits of randomized techniques depend on the computational environment. Consider the model problem of finding the k dominant components of the singular value decomposition
The Convex Geometry of Linear Inverse Problems
, 2010
"... In applications throughout science and engineering one is often faced with the challenge of solving an illposed inverse problem, where the number of available measurements is smaller than the dimension of the model to be estimated. However in many practical situations of interest, models are constr ..."
Abstract

Cited by 44 (11 self)
 Add to MetaCart
In applications throughout science and engineering one is often faced with the challenge of solving an illposed inverse problem, where the number of available measurements is smaller than the dimension of the model to be estimated. However in many practical situations of interest, models are constrained structurally so that they only have a few degrees of freedom relative to their ambient dimension. This paper provides a general framework to convert notions of simplicity into convex penalty functions, resulting in convex optimization solutions to linear, underdetermined inverse problems. The class of simple models considered are those formed as the sum of a few atoms from some (possibly infinite) elementary atomic set; examples include wellstudied cases such as sparse vectors (e.g., signal processing, statistics) and lowrank matrices (e.g., control, statistics), as well as several others including sums of a few permutations matrices (e.g., ranked elections, multiobject tracking), lowrank tensors (e.g., computer vision, neuroscience), orthogonal matrices (e.g., machine learning), and atomic measures (e.g., system identification). The convex programming formulation is based on minimizing the norm induced by the convex hull of the atomic set; this norm is referred to as the atomic norm. The facial
Hiroshi Imai and Masao Iri. Polygonal approximations of a curve – formulations and algorithms
 Computational Morphology
, 1988
"... Regularization by the sum of singular values, also referred to as the trace norm, is a popular technique for estimating low rank rectangular matrices. In this paper, we extend some of the consistency results of the Lasso to provide necessary and sufficient conditions for rank consistency of trace no ..."
Abstract

Cited by 43 (8 self)
 Add to MetaCart
Regularization by the sum of singular values, also referred to as the trace norm, is a popular technique for estimating low rank rectangular matrices. In this paper, we extend some of the consistency results of the Lasso to provide necessary and sufficient conditions for rank consistency of trace norm minimization with the square loss. We also provide an adaptive version that is rank consistent even when the necessary condition for the non adaptive version is not fulfilled. 1.