Results 1 
3 of
3
Modular Decomposition and Transitive Orientation
, 1999
"... A module of an undirected graph is a set X of nodes such for each node x not in X, either every member of X is adjacent to x, or no member of X is adjacent to x. There is a canonical linearspace representation for the modules of a graph, called the modular decomposition. Closely related to modular ..."
Abstract

Cited by 90 (14 self)
 Add to MetaCart
A module of an undirected graph is a set X of nodes such for each node x not in X, either every member of X is adjacent to x, or no member of X is adjacent to x. There is a canonical linearspace representation for the modules of a graph, called the modular decomposition. Closely related to modular decomposition is the transitive orientation problem, which is the problem of assigning a direction to each edge of a graph so that the resulting digraph is transitive. A graph is a comparability graph if such an assignment is possible. We give O(n +m) algorithms for modular decomposition and transitive orientation, where n and m are the number of vertices and edges of the graph. This gives linear time bounds for recognizing permutation graphs, maximum clique and minimum vertex coloring on comparability graphs, and other combinatorial problems on comparability graphs and their complements.
LexBFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing
, 2000
"... ..."
On Stable Cutsets in Graphs
, 2000
"... We answer a question of Corneil and Fonlupt by showing that deciding whether a graph has a stable cutset is NPcomplete even for restricted graph classes. Some efficiently solvable cases will be discussed, too. ..."
Abstract

Cited by 5 (3 self)
 Add to MetaCart
We answer a question of Corneil and Fonlupt by showing that deciding whether a graph has a stable cutset is NPcomplete even for restricted graph classes. Some efficiently solvable cases will be discussed, too.