Results 1  10
of
166
Bayes Factors
, 1995
"... In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null ..."
Abstract

Cited by 983 (70 self)
 Add to MetaCart
In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null is onehalf. Although there has been much discussion of Bayesian hypothesis testing in the context of criticism of P values, less attention has been given to the Bayes factor as a practical tool of applied statistics. In this paper we review and discuss the uses of Bayes factors in the context of five scientific applications in genetics, sports, ecology, sociology and psychology.
Unsupervised word sense disambiguation rivaling supervised methods
 IN PROCEEDINGS OF THE 33RD ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS
, 1995
"... This paper presents an unsupervised learning algorithm for sense disambiguation that, when trained on unannotated English text, rivals the performance of supervised techniques that require timeconsuming hand annotations. The algorithm is based on two powerful constraints  that words tend to have ..."
Abstract

Cited by 492 (4 self)
 Add to MetaCart
This paper presents an unsupervised learning algorithm for sense disambiguation that, when trained on unannotated English text, rivals the performance of supervised techniques that require timeconsuming hand annotations. The algorithm is based on two powerful constraints  that words tend to have one sense per discourse and one sense per collocation  exploited in an iterative bootstrapping procedure. Tested accuracy exceeds 96%.
Beyond Market Baskets: Generalizing Association Rules To Dependence Rules
, 1998
"... One of the more wellstudied problems in data mining is the search for association rules in market basket data. Association rules are intended to identify patterns of the type: “A customer purchasing item A often also purchases item B. Motivated partly by the goal of generalizing beyond market bask ..."
Abstract

Cited by 490 (7 self)
 Add to MetaCart
One of the more wellstudied problems in data mining is the search for association rules in market basket data. Association rules are intended to identify patterns of the type: “A customer purchasing item A often also purchases item B. Motivated partly by the goal of generalizing beyond market basket data and partly by the goal of ironing out some problems in the definition of association rules, we develop the notion of dependence rules that identify statistical dependence in both the presence and absence of items in itemsets. We propose measuring significance of dependence via the chisquared test for independence from classical statistics. This leads to a measure that is upwardclosed in the itemset lattice, enabling us to reduce the mining problem to the search for a border between dependent and independent itemsets in the lattice. We develop pruning strategies based on the closure property and thereby devise an efficient algorithm for discovering dependence rules. We demonstrate our algorithm’s effectiveness by testing it on census data, text data (wherein we seek term dependence), and synthetic data.
Document Language Models, Query Models, and Risk Minimization for Information Retrieval
 In Proceedings of SIGIR’01
, 2001
"... ..."
WordSense Disambiguation Using Statistical Models of Roget's Categories Trained on Large Corpora
, 1992
"... This paper describes a program that disambiguates English word senses in unrestricted text using statistical models of the major Roget's Thesaurus categories. Roget's categories serve as approximations of conceptual classes. The categories listed for a word in Roget's index tend to correspond to ..."
Abstract

Cited by 304 (13 self)
 Add to MetaCart
This paper describes a program that disambiguates English word senses in unrestricted text using statistical models of the major Roget's Thesaurus categories. Roget's categories serve as approximations of conceptual classes. The categories listed for a word in Roget's index tend to correspond to sense distinctions; thus selecting the most likely category provides a useful level of sense disambiguation. The selection of categories is accomplished by identifying and weighting words that are indicative of each category when seen in context, using a Bayesian theoretical framework. Other
Decision Lists For Lexical Ambiguity Resolution: Application to Accent Restoration in Spanish and French
, 1994
"... This paper presents a statistical decision procedure for lexical ambiguity resolution. The algorithm exploits both local syntactic patterns and more distant collocational evidence, generating an efficient, effective, and highly perspicuous recipe for resolving a given ambiguity. By identifying and u ..."
Abstract

Cited by 148 (3 self)
 Add to MetaCart
This paper presents a statistical decision procedure for lexical ambiguity resolution. The algorithm exploits both local syntactic patterns and more distant collocational evidence, generating an efficient, effective, and highly perspicuous recipe for resolving a given ambiguity. By identifying and utilizing only the single best disambiguating evidence in a target context, the algorithm avoids the problematic complex modeling of statistical dependencies. Although directly applicable to a wide class of ambiguities, the algorithm is described and evaluated in a realistic case study, the problem of restoring missing accents in Spanish and French text. Current accuracy exceeds 99% on the full task, and typically is over 90% for even the most difficult ambiguities.
Word sense disambiguation using a second language monolingual corpus
 COMPUTATIONAL LINGUISTICS
, 1994
"... This paper presents a new approach for resolving lexical ambiguities in one language using statistical data from a monolingual corpus of another language. This approach exploits the differences between mappings of words to senses in different languages. The paper concentrates on the problem of targe ..."
Abstract

Cited by 138 (1 self)
 Add to MetaCart
This paper presents a new approach for resolving lexical ambiguities in one language using statistical data from a monolingual corpus of another language. This approach exploits the differences between mappings of words to senses in different languages. The paper concentrates on the problem of target word selection in machine translation, for which the approach is directly applicable. The presented algorithm identifies syntactic relations between words, using a source language parser, and maps the alternative interpretations of these relations to the target language, using a bilingual lexicon. The preferred senses are then selected according to statistics on lexical relations in the target language. The selection is based on a statistical model and on a constraint propagation algorithm, which simultaneously handles all ambiguities in the sentence. The method was evaluated using three sets of Hebrew and German examples and was found to be very useful for disambiguation. The paper includes a detailed comparative analysis of statistical sense disambiguation methods.
Introduction to the Special Issue on Computational Linguistics using Large Corpora
 Computational Linguistics
, 1993
"... ..."
y Yarowsky, D.: Estimating upper and lower bounds on the performance of wordsense disambiguation programs. En: Memorias de the 30th Annual Meeting of the Association for Computational Linguistics
, 1992
"... We have recently reported on two new wordsense disambiguation systems, one trained on bilingual material (the Canadian Hansards) and the other trained on monolingual material (Roget's Thesaurus and Grolier's Encyclopedia). After using both the monolingual and bilingual classifiers for a few months, ..."
Abstract

Cited by 96 (0 self)
 Add to MetaCart
We have recently reported on two new wordsense disambiguation systems, one trained on bilingual material (the Canadian Hansards) and the other trained on monolingual material (Roget's Thesaurus and Grolier's Encyclopedia). After using both the monolingual and bilingual classifiers for a few months, we have convinced ourselves that the performance is remarkably good. Nevertheless, we would really like to be able to make a stronger statement, and therefore, we decided to try to develop some more objective evaluation measures. Although there has been a fair amount of literature on sensedisambiguation, the literature does not offer much guidance in how we might establish the success or failure of a proposed solution such as the two systems mentioned in the previous paragraph. Many papers avoid quantitative evaluations altogether, because it is so difficult to come up with credible estimates of performance. This paper will attempt to establish upper and lower bounds on the level of performance that can be expected in an evaluation. An estimate of the lower bound of 75 % (averaged over ambiguous types) is obtained by measuring the performance produced by a baseline system that ignores context and simply assigns the most likely sense in all cases. An estimate of the upper bound is obtained by assuming that our ability to measure performance is largely limited by our ability obtain reliable judgments from human informants. Not surprisingly, the upper bound is very dependent on the instructions given to the judges. Jorgensen, for example, suspected that lexicographers tend to depend too much on judgments by a single informant and found considerable variation over judgments (only 68% agreement), as she had suspected. In our own experiments, we have set out to find wordsense disambiguation tasks where the judges can agree often enough so that we could show that they were outperforming the baseline system. Under quite different conditions, we have found 96.8 % agreement over judges.
Bayes factors and model uncertainty
 DEPARTMENT OF STATISTICS, UNIVERSITY OFWASHINGTON
, 1993
"... In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null ..."
Abstract

Cited by 89 (6 self)
 Add to MetaCart
In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null is onehalf. Although there has been much discussion of Bayesian hypothesis testing in the context of criticism of Pvalues, less attention has been given to the Bayes factor as a practical tool of applied statistics. In this paper we review and discuss the uses of Bayes factors in the context of five scientific applications. The points we emphasize are: from Jeffreys's Bayesian point of view, the purpose of hypothesis testing is to evaluate the evidence in favor of a scientific theory; Bayes factors offer a way of evaluating evidence in favor ofa null hypothesis; Bayes factors provide a way of incorporating external information into the evaluation of evidence about a hypothesis; Bayes factors are very general, and do not require alternative models to be nested; several techniques are available for computing Bayes factors, including asymptotic approximations which are easy to compute using the output from standard packages that maximize likelihoods; in "nonstandard " statistical models that do not satisfy common regularity conditions, it can be technically simpler to calculate Bayes factors than to derive nonBayesian significance