Results 1  10
of
185
The curvelet transform for image denoising
 IEEE TRANS. IMAGE PROCESS
, 2002
"... We describe approximate digital implementations of two new mathematical transforms, namely, the ridgelet transform [2] and the curvelet transform [6], [5]. Our implementations offer exact reconstruction, stability against perturbations, ease of implementation, and low computational complexity. A cen ..."
Abstract

Cited by 396 (40 self)
 Add to MetaCart
We describe approximate digital implementations of two new mathematical transforms, namely, the ridgelet transform [2] and the curvelet transform [6], [5]. Our implementations offer exact reconstruction, stability against perturbations, ease of implementation, and low computational complexity. A central tool is Fourierdomain computation of an approximate digital Radon transform. We introduce a very simple interpolation in Fourier space which takes Cartesian samples and yields samples on a rectopolar grid, which is a pseudopolar sampling set based on a concentric squares geometry. Despite the crudeness of our interpolation, the visual performance is surprisingly good. Our ridgelet transform applies to the Radon transform a special overcomplete wavelet pyramid whose wavelets have compact support in the frequency domain. Our curvelet transform uses our ridgelet transform as a component step, and implements curvelet subbands using a filter bank of à trous wavelet filters. Our philosophy throughout is that transforms should be overcomplete, rather than critically sampled. We apply these digital transforms to the denoising of some standard images embedded in white noise. In the tests reported here, simple thresholding of the curvelet coefficients is very competitive with “state of the art ” techniques based on wavelets, including thresholding of decimated or undecimated wavelet transforms and also including treebased Bayesian posterior mean methods. Moreover, the curvelet reconstructions exhibit higher perceptual quality than waveletbased reconstructions, offering visually sharper images and, in particular, higher quality recovery of edges and of faint linear and curvilinear features. Existing theory for curvelet and ridgelet transforms suggests that these new approaches can outperform wavelet methods in certain image reconstruction problems. The empirical results reported here are in encouraging agreement.
An EM Algorithm for WaveletBased Image Restoration
, 2002
"... This paper introduces an expectationmaximization (EM) algorithm for image restoration (deconvolution) based on a penalized likelihood formulated in the wavelet domain. Regularization is achieved by promoting a reconstruction with lowcomplexity, expressed in terms of the wavelet coecients, taking a ..."
Abstract

Cited by 351 (23 self)
 Add to MetaCart
(Show Context)
This paper introduces an expectationmaximization (EM) algorithm for image restoration (deconvolution) based on a penalized likelihood formulated in the wavelet domain. Regularization is achieved by promoting a reconstruction with lowcomplexity, expressed in terms of the wavelet coecients, taking advantage of the well known sparsity of wavelet representations. Previous works have investigated waveletbased restoration but, except for certain special cases, the resulting criteria are solved approximately or require very demanding optimization methods. The EM algorithm herein proposed combines the efficient image representation oered by the discrete wavelet transform (DWT) with the diagonalization of the convolution operator obtained in the Fourier domain. The algorithm alternates between an Estep based on the fast Fourier transform (FFT) and a DWTbased Mstep, resulting in an ecient iterative process requiring O(N log N) operations per iteration. Thus, it is the rst image restoration algorithm that optimizes a waveletbased penalized likelihood criterion and has computational complexity comparable to that of standard wavelet denoising or frequency domain deconvolution methods. The convergence behavior of the algorithm is investigated, and it is shown that under mild conditions the algorithm converges to a globally optimal restoration. Moreover, our new approach outperforms several of the best existing methods in benchmark tests, and in some cases is also much less computationally demanding.
Sparse Geometric Image Representations with Bandelets
, 2004
"... This paper introduces a new class of bases, called bandelet bases, which decompose the image along multiscale vectors that are elongated in the direction of a geometric flow. This geometric flow indicates directions in which the image grey levels have regular variations. The image decomposition in ..."
Abstract

Cited by 196 (4 self)
 Add to MetaCart
This paper introduces a new class of bases, called bandelet bases, which decompose the image along multiscale vectors that are elongated in the direction of a geometric flow. This geometric flow indicates directions in which the image grey levels have regular variations. The image decomposition in a bandelet basis is implemented with a fast subband filtering algorithm. Bandelet bases lead to optimal approximation rates for geometrically regular images. For image compression and noise removal applications, the geometric flow is optimized with fast algorithms, so that the resulting bandelet basis produces a minimum distortion. Comparisons are made with wavelet image compression and noise removal algorithms.
Multiresolution markov models for signal and image processing
 Proceedings of the IEEE
, 2002
"... This paper reviews a significant component of the rich field of statistical multiresolution (MR) modeling and processing. These MR methods have found application and permeated the literature of a widely scattered set of disciplines, and one of our principal objectives is to present a single, coheren ..."
Abstract

Cited by 154 (19 self)
 Add to MetaCart
(Show Context)
This paper reviews a significant component of the rich field of statistical multiresolution (MR) modeling and processing. These MR methods have found application and permeated the literature of a widely scattered set of disciplines, and one of our principal objectives is to present a single, coherent picture of this framework. A second goal is to describe how this topic fits into the even larger field of MR methods and concepts–in particular making ties to topics such as wavelets and multigrid methods. A third is to provide several alternate viewpoints for this body of work, as the methods and concepts we describe intersect with a number of other fields. The principle focus of our presentation is the class of MR Markov processes defined on pyramidally organized trees. The attractiveness of these models stems from both the very efficient algorithms they admit and their expressive power and broad applicability. We show how a variety of methods and models relate to this framework including models for selfsimilar and 1/f processes. We also illustrate how these methods have been used in practice. We discuss the construction of MR models on trees and show how questions that arise in this context make contact with wavelets, state space modeling of time series, system and parameter identification, and hidden
Adaptive wavelet estimation: A block thresholding and oracle inequality approach
 Ann. Statist
, 1999
"... We study wavelet function estimation via the approach of block thresholding and ideal adaptation with oracle. Oracle inequalities are derived and serve as guides for the selection of smoothing parameters. Based on an oracle inequality and motivated by the data compression and localization properties ..."
Abstract

Cited by 146 (20 self)
 Add to MetaCart
We study wavelet function estimation via the approach of block thresholding and ideal adaptation with oracle. Oracle inequalities are derived and serve as guides for the selection of smoothing parameters. Based on an oracle inequality and motivated by the data compression and localization properties of wavelets, an adaptive wavelet estimator for nonparametric regression is proposed and the optimality of the procedure is investigated. We show that the estimator achieves simultaneously three objectives: adaptivity, spatial adaptivity and computational efficiency. Specifically, it is proved that the estimator attains the exact optimal rates of convergence over a range of Besov classes and the estimator achieves adaptive local minimax rate for estimating functions at a point. The estimator is easy to implement, at the computational cost of O�n�. Simulation shows that the estimator has excellent numerical performance relative to more traditional wavelet estimators. 1. Introduction. Wavelet
NONSUBSAMPLED CONTOURLET TRANSFORM: FILTER DESIGN AND APPLICATIONS IN DENOISING
"... In this paper we study the nonsubsampled contourlet transform. We address the corresponding filter design problem using the McClellan transformation. We show how zeroes can be imposed in the filters so that the iterated structure produces regular basis functions. The proposed design framework yields ..."
Abstract

Cited by 105 (4 self)
 Add to MetaCart
(Show Context)
In this paper we study the nonsubsampled contourlet transform. We address the corresponding filter design problem using the McClellan transformation. We show how zeroes can be imposed in the filters so that the iterated structure produces regular basis functions. The proposed design framework yields filters that can be implemented efficiently through a lifting factorization. We apply the constructed transform in image noise removal where the results obtained are comparable to the stateofthe art, being superior in some cases.
Platelets: A Multiscale Approach for Recovering Edges and Surfaces in PhotonLimited Medical Imaging
 IEEE TRANSACTIONS ON MEDICAL IMAGING
, 2003
"... The nonparametric multiscale platelet algorithms presented in this paper, unlike traditional waveletbased methods, are both well suited to photonlimited medical imaging applications involving Poisson data and capable of better approximating edge contours. This paper introduces platelets, localized ..."
Abstract

Cited by 99 (20 self)
 Add to MetaCart
The nonparametric multiscale platelet algorithms presented in this paper, unlike traditional waveletbased methods, are both well suited to photonlimited medical imaging applications involving Poisson data and capable of better approximating edge contours. This paper introduces platelets, localized functions at various scales, locations, and orientations that produce piecewise linear image approximations, and a new multiscale image decomposition based on these functions. Platelets are well suited for approximating images consisting of smooth regions separated by smooth boundaries. For smoothness measured in certain H older classes, it is shown that the error of mterm platelet approximations can decay significantly faster than that of mterm approximations in terms of sinusoids, wavelets, or wedgelets. This suggests that platelets may outperform existing techniques for image denoising and reconstruction. Fast, plateletbased, maximum penalized likelihood methods for photonlimited image denoising, deblurring and tomographic reconstruction problems are developed. Because platelet decompositions of Poisson distributed images are tractable and computationally efficient, existing image reconstruction methods based on expectationmaximization type algorithms can be easily enhanced with platelet techniques. Experimental results suggest that plateletbased methods can outperform standard reconstruction methods currently in use in confocal microscopy, image restoration, and emission tomography.
On the Equivalence of Soft Wavelet Shrinkage, Total Variation Diffusion, Total Variation Regularization, and SIDEs
 SIAM J. NUMER. ANAL
, 2004
"... Soft wavelet shrinkage, total variation (TV) diffusion, TV regularization, and a dynamical system called SIDEs are four useful techniques for discontinuity preserving denoising of signals and images. In this paper we investigate under which circumstances these methods are equivalent in the onedimen ..."
Abstract

Cited by 91 (19 self)
 Add to MetaCart
(Show Context)
Soft wavelet shrinkage, total variation (TV) diffusion, TV regularization, and a dynamical system called SIDEs are four useful techniques for discontinuity preserving denoising of signals and images. In this paper we investigate under which circumstances these methods are equivalent in the onedimensional case. First, we prove that Haar wavelet shrinkage on a single scale is equivalent to a single step of spacediscrete TV diffusion or regularization of twopixel pairs. In the translationally invariant case we show that applying cycle spinning to Haar wavelet shrinkage on a single scale can be regarded as an absolutely stable explicit discretization of TV diffusion. We prove that spacediscrete TV diffusion and TV regularization are identical and that they are also equivalent to the SIDEs system when a specific force function is chosen. Afterwards, we show that wavelet shrinkage on multiple scales can be regarded as a single step diffusion filtering or regularization of the Laplacian pyramid of the signal. We analyze possibilities to avoid Gibbslike artifacts for multiscale Haar wavelet shrinkage by scaling the thresholds. Finally, we present experiments where hybrid methods are designed that combine the advantages of wavelets and PDE/variational approaches. These methods are based on iterated shiftinvariant wavelet shrinkage at multiple scales with scaled thresholds.
WaveletBased Rician Noise Removal for Magnetic Resonance Imaging
, 1998
"... It is wellknown that the noise in magnetic resonance magnitude images obeys a Rician distribution. Unlike additive Gaussian noise, Rician noise is signaldependent and consequently separating signal from noise is a difficult task. Rician noise is especially problematic in low signaltonoise ratio ..."
Abstract

Cited by 91 (0 self)
 Add to MetaCart
It is wellknown that the noise in magnetic resonance magnitude images obeys a Rician distribution. Unlike additive Gaussian noise, Rician noise is signaldependent and consequently separating signal from noise is a difficult task. Rician noise is especially problematic in low signaltonoise ratio (SNR) regimes where it not only causes random fluctuations, but also introduces a signaldependent bias to the data that reduces image contrast. This paper studies waveletdomain filtering methods for Rician noise removal. We derive a novel waveletdomain filter that adapts to variations in both the signal and the noise. The new waveletdomain filter reduces Rician noise contamination in both high and low SNR regimes. I. Introduction In magnetic resonance imaging (MRI), there is an intrinsic tradeoff between the signaltonoise ratio (SNR), spatial resolution, and acquisition time required by the intended clinical/research application [1]. Therefore, given physiological or research paradig...