Results 1 
6 of
6
On Linear Layouts of Graphs
, 2004
"... In a total order of the vertices of a graph, two edges with no endpoint in common can be crossing, nested, or disjoint. A kstack (resp... ..."
Abstract

Cited by 31 (19 self)
 Add to MetaCart
In a total order of the vertices of a graph, two edges with no endpoint in common can be crossing, nested, or disjoint. A kstack (resp...
Pathwidth and ThreeDimensional StraightLine Grid Drawings of Graphs
"... We prove that every nvertex graph G with pathwidth pw(G) has a threedimensional straightline grid drawing with O(pw(G) n) volume. Thus for ..."
Abstract

Cited by 24 (12 self)
 Add to MetaCart
We prove that every nvertex graph G with pathwidth pw(G) has a threedimensional straightline grid drawing with O(pw(G) n) volume. Thus for
Drawing planar graphs symmetrically, III: Oneconnected planar graphs
 ALGORITHMICA
, 2006
"... Symmetry is one of the most important aesthetic criteria in graph drawing because it reveals structure in the graph. This paper discusses symmetric drawings of oneconnected planar graphs. More specifically, we discuss planar (geometric) automorphisms, that is, automorphisms of a graph G that can b ..."
Abstract

Cited by 8 (5 self)
 Add to MetaCart
Symmetry is one of the most important aesthetic criteria in graph drawing because it reveals structure in the graph. This paper discusses symmetric drawings of oneconnected planar graphs. More specifically, we discuss planar (geometric) automorphisms, that is, automorphisms of a graph G that can be represented as symmetries of a planar drawing of G. Finding planar automorphisms is the first and most difficult step in constructing planar symmetric drawings of graphs. The problem of determining whether a given graph has a nontrivial geometric automorphism is NPcomplete for general graphs. The two previous papers in this series have discussed the problem of drawing planar graphs with a maximum number of symmetries, for the restricted cases where the graph is triconnected and biconnected. This paper extends the previous results to cover planar graphs that are oneconnected. We present a linear time algorithm for drawing oneconnected planar graphs with a maximum number of symmetries.
New Results in Graph Layout
 School of Computer Science, Carleton Univ
, 2003
"... A track layout of a graph consists of a vertex colouring, an edge colouring, and a total order of each vertex colour class such that between each pair of vertex colour classes, there is no monochromatic pair of crossing edges. This paper studies track layouts and their applications to other models o ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
A track layout of a graph consists of a vertex colouring, an edge colouring, and a total order of each vertex colour class such that between each pair of vertex colour classes, there is no monochromatic pair of crossing edges. This paper studies track layouts and their applications to other models of graph layout. In particular, we improve on the results of Enomoto and Miyauchi [SIAM J. Discrete Math., 1999] regarding stack layouts of subdivisions, and give analogous results for queue layouts. We solve open problems due to Felsner, Wismath, and Liotta [Proc. Graph Drawing, 2001] and Pach, Thiele, and Toth [Proc. Graph Drawing, 1997] concerning threedimensional straightline grid drawings. We initiate the study of threedimensional polyline grid drawings and establish volume bounds within a logarithmic factor of optimal.
Linkless symmetric drawings of series parallel digraphs
, 2004
"... In this paper, we present a linear time algorithm for constructing linkless drawings of series parallel digraphs with maximum number of symmetries. Linkless drawing in three dimensions is a natural extension to planar drawing in two dimensions. Symmetry is one of the most important aesthetic criteri ..."
Abstract
 Add to MetaCart
In this paper, we present a linear time algorithm for constructing linkless drawings of series parallel digraphs with maximum number of symmetries. Linkless drawing in three dimensions is a natural extension to planar drawing in two dimensions. Symmetry is one of the most important aesthetic criteria in graph drawing. More specifically, we present two algorithms: a symmetry finding algorithm which finds maximum number of three dimensional symmetries, and a drawing algorithm which constructs linkless symmetric drawings of series parallel digraphs in three dimensions.
Geometric Automorphism Groups of Graphs ⋆
"... Abstract. Constructing symmetric drawings of graphs is NPhard. In this paper, we present a new method for drawing graphs symmetrically based on group theory. More formally, we define an ngeometric automorphism group as a subgroup of the automorphism group of a graph that can be displayed as symmet ..."
Abstract
 Add to MetaCart
Abstract. Constructing symmetric drawings of graphs is NPhard. In this paper, we present a new method for drawing graphs symmetrically based on group theory. More formally, we define an ngeometric automorphism group as a subgroup of the automorphism group of a graph that can be displayed as symmetries of a drawing of the graph in n dimensions. Then we present an algorithm to find all 2 and 3geometric automorphism groups of a given graph. We implement the algorithm using Magma [29] and the experimental results show that our approach is very efficient in practice. We also present a drawing algorithm to display 2 and 3geometric automorphism groups.