Results 1  10
of
70
Logical Models of Argument
 ACM COMPUTING SURVEYS
, 2000
"... Logical models of argument formalize commonsense reasoning while taking process and computation seriously. This survey discusses the main ideas which characterize different logical models of argument. It presents the formal features of a few main approaches to the modeling of argumentation. We trace ..."
Abstract

Cited by 144 (33 self)
 Add to MetaCart
Logical models of argument formalize commonsense reasoning while taking process and computation seriously. This survey discusses the main ideas which characterize different logical models of argument. It presents the formal features of a few main approaches to the modeling of argumentation. We trace the
Possibility Theory as a Basis for Qualitative Decision Theory
, 1995
"... A counterpart to von Neumann and Morgenstern' expected utility theory is proposed in the framework of possibility theory. The existence of a utility function, representing a preference ordering among possibility distributions (on the consequences of decisionmaker's actions) that satisfies a series ..."
Abstract

Cited by 101 (25 self)
 Add to MetaCart
A counterpart to von Neumann and Morgenstern' expected utility theory is proposed in the framework of possibility theory. The existence of a utility function, representing a preference ordering among possibility distributions (on the consequences of decisionmaker's actions) that satisfies a series of axioms pertaining to decisionmaker's behavior, is established. The obtained utility is a generalization of Wald's criterion, which is recovered in case of total ignorance; when ignorance is only partial, the utility takes into account the fact that some situations are more plausible than others. Mathematically, the qualitative utility is nothing but the necessity measure of a fuzzy event in the sense of possibility theory (a socalled Sugeno integral). The possibilistic representation of uncertainty, which only requires a linearly ordered scale, is qualitative in nature. Only max, min and orderreversing operations are used on the scale. The axioms express a riskaverse behavior of the d...
Possibility theory in constraint satisfaction problems: Handling priority, preference and uncertainty
 Applied Intelligence
, 1996
"... In classical Constraint Satisfaction Problems (CSPs) knowledge is embedded in a set of hard constraints, each one restricting the possible values of a set of variables. However constraints in real world problems are seldom hard, and CSP's are often idealizations that do not account for the preferenc ..."
Abstract

Cited by 74 (13 self)
 Add to MetaCart
In classical Constraint Satisfaction Problems (CSPs) knowledge is embedded in a set of hard constraints, each one restricting the possible values of a set of variables. However constraints in real world problems are seldom hard, and CSP's are often idealizations that do not account for the preference among feasible solutions. Moreover some constraints may have priority over others. Lastly, constraints may involve uncertain parameters. This paper advocates the use of fuzzy sets and possibility theory as a realistic approach for the representation of these three aspects. Fuzzy constraints encompass both preference relations among possible instanciations and priorities among constraints. In a Fuzzy Constraint Satisfaction Problem (FCSP), a constraint is satisfied to a degree (rather than satisfied or not satisfied) and the acceptability of a potential solution becomes a gradual notion. Even if the FCSP is partially inconsistent, best instanciations are provided owing to the relaxation of ...
Some syntactic approaches to the handling of inconsistent knowledge bases: A comparative study  Part 1: The flat case
"... This paper presents and discusses several methods for reasoning from inconsistent knowledge bases. A socalled argued consequence relation, taking into account the existence of consistent arguments in favour of a conclusion and the absence of consistent arguments in favour of its contrary, is partic ..."
Abstract

Cited by 71 (12 self)
 Add to MetaCart
This paper presents and discusses several methods for reasoning from inconsistent knowledge bases. A socalled argued consequence relation, taking into account the existence of consistent arguments in favour of a conclusion and the absence of consistent arguments in favour of its contrary, is particularly investigated. Flat knowledge bases, i.e., without any priority between their elements, are studied under different inconsistencytolerant consequence relations, namely the socalled argumentative, free, universal, existential, cardinalitybased, and paraconsistent consequence relations. The syntaxsensitivity of these consequence relations is studied. A companion paper is devoted to the case where priorities exist between the pieces of information in the knowledge base. Key words: inconsistency, argumentation, nonmonotonic reasoning, syntaxsensitivity. * Some of the results contained in this paper were presented at the Ninth Conference on Uncertainty in Artificial Intelligence (UAI'...
Nonmonotonic Reasoning, Conditional Objects and Possibility Theory
 Artificial Intelligence
, 1997
"... . This short paper relates the conditional objectbased and possibility theorybased approaches for reasoning with conditional statements pervaded with exceptions, to other methods in nonmonotonic reasoning which have been independently proposed: namely, Lehmann's preferential and rational closure en ..."
Abstract

Cited by 68 (17 self)
 Add to MetaCart
. This short paper relates the conditional objectbased and possibility theorybased approaches for reasoning with conditional statements pervaded with exceptions, to other methods in nonmonotonic reasoning which have been independently proposed: namely, Lehmann's preferential and rational closure entailments which obey normative postulates, the infinitesimal probability approach, and the conditional (modal) logicsbased approach. All these methods are shown to be equivalent with respect to their capabilities for reasoning with conditional knowledge although they are based on different modeling frameworks. It thus provides a unified understanding of nonmonotonic consequence relations. More particularly, conditional objects, a purely qualitative counterpart to conditional probabilities, offer a very simple semantics, based on a 3valued calculus, for the preferential entailment, while in the purely ordinal setting of possibility theory both the preferential and the rational closure entai...
Argumentative Inference in Uncertain and Inconsistent Knowledge Bases
 In Proceedings of Uncertainty in Artificial Intelligence
, 1993
"... : This paper presents and discusses several methods for reasoning from inconsistent knowledge bases. A socalled argumentativeconsequence relation, taking into account the existence of consistent arguments in favor of a conclusion and the absence of consistent arguments in favor of its contrary, is ..."
Abstract

Cited by 66 (3 self)
 Add to MetaCart
: This paper presents and discusses several methods for reasoning from inconsistent knowledge bases. A socalled argumentativeconsequence relation, taking into account the existence of consistent arguments in favor of a conclusion and the absence of consistent arguments in favor of its contrary, is particularly investigated. Flat knowledge bases, i.e. without any priority between their elements, as well as prioritized ones where some elements are considered as more strongly entrenched than others are studied under the different consequence relations which are considered. Lastly a paraconsistentlike treatment of prioritized knowledge bases is proposed, where both the level of entrenchment and the level of paraconsistency attached to a formula are propagated. The priority levels are handled in the framework of possibility theory. Keywords: Inconsistency; consequence relation; prioritized knowledge base; uncertainty; possibilistic logic; possibility theory. Submitted to the Ninth Annual...
Current Approaches to Handling Imperfect Information in Data and Knowledge Bases
, 1996
"... This paper surveys methods for representing and reasoning with imperfect information. It opens with an attempt to classify the different types of imperfection that may pervade data, and a discussion of the sources of such imperfections. The classification is then used as a framework for considering ..."
Abstract

Cited by 52 (1 self)
 Add to MetaCart
This paper surveys methods for representing and reasoning with imperfect information. It opens with an attempt to classify the different types of imperfection that may pervade data, and a discussion of the sources of such imperfections. The classification is then used as a framework for considering work that explicitly concerns the representation of imperfect information, and related work on how imperfect information may be used as a basis for reasoning. The work that is surveyed is drawn from both the field of databases and the field of artificial intelligence. Both of these areas have long been concerned with the problems caused by imperfect information, and this paper stresses the relationships between the approaches developed in each.
Fuzzy sets and probability : Misunderstandings, bridges and gaps
 In Proceedings of the Second IEEE Conference on Fuzzy Systems
, 1993
"... This paper is meant to survey the literature pertaining to this debate, and to try to overcome misunderstandings and to supply access to many basic references that have addressed the "probability versus fuzzy set" challenge. This problem has not a single facet, as will be claimed here. Moreover it s ..."
Abstract

Cited by 39 (5 self)
 Add to MetaCart
This paper is meant to survey the literature pertaining to this debate, and to try to overcome misunderstandings and to supply access to many basic references that have addressed the "probability versus fuzzy set" challenge. This problem has not a single facet, as will be claimed here. Moreover it seems that a lot of controversies might have been avoided if protagonists had been patient enough to build a common language and to share their scientific backgrounds. The main points made here are as follows. i) Fuzzy set theory is a consistent body of mathematical tools. ii) Although fuzzy sets and probability measures are distinct, several bridges relating them have been proposed that should reconcile opposite points of view ; especially possibility theory stands at the crossroads between fuzzy sets and probability theory. iii) Mathematical objects that behave like fuzzy sets exist in probability theory. It does not mean that fuzziness is reducible to randomness. Indeed iv) there are ways of approaching fuzzy sets and possibility theory that owe nothing to probability theory. Interpretations of probability theory are multiple especially frequentist versus subjectivist views (Fine [31]) ; several interpretations of fuzzy sets also exist. Some interpretations of fuzzy sets are in agreement with probability calculus and some are not. The paper is structured as follows : first we address some classical misunderstandings between fuzzy sets and probabilities. They must be solved before any discussion can take place. Then we consider probabilistic interpretations of membership functions, that may help in membership function assessment. We also point out nonprobabilistic interpretations of fuzzy sets. The next section examines the literature on possibilityprobability transformati...
Belief Functions and Default Reasoning
, 2000
"... We present a new approach to deal with default information based on the theory of belief functions. Our semantic structures, inspired by Adams' epsilon semantics, are epsilonbelief assignments, where mass values are either close to 0 or close to 1. In the first part of this paper, we show that t ..."
Abstract

Cited by 38 (3 self)
 Add to MetaCart
We present a new approach to deal with default information based on the theory of belief functions. Our semantic structures, inspired by Adams' epsilon semantics, are epsilonbelief assignments, where mass values are either close to 0 or close to 1. In the first part of this paper, we show that these structures can be used to give a uniform semantics to several popular nonmonotonic systems, including Kraus, Lehmann and Magidor's system P, Pearl's system Z, Brewka's preferred subtheories, Geffner's conditional entailment, Pinkas' penalty logic, possibilistic logic and the lexicographic approach. In the second part, we use epsilonbelief assignments to build a new system, called LCD, and show that this system correctly addresses the wellknown problems of specificity, irrelevance, blocking of inheritance, ambiguity, and redundancy.