Results 1  10
of
27
Toward Logic Tailored for Computational Complexity
 COMPUTATION AND PROOF THEORY
, 1984
"... Whereas firstorder logic was developed to confront the infinite it is often used in computer science in such a way that infinite models are meaningless. We discuss the firstorder theory of finite structures and alternatives to firstorder logic, especially polynomial time logic. ..."
Abstract

Cited by 75 (6 self)
 Add to MetaCart
Whereas firstorder logic was developed to confront the infinite it is often used in computer science in such a way that infinite models are meaningless. We discuss the firstorder theory of finite structures and alternatives to firstorder logic, especially polynomial time logic.
The History and Status of the P versus NP Question
, 1992
"... this article, I have attempted to organize and describe this literature, including an occasional opinion about the most fruitful directions, but no technical details. In the first half of this century, work on the power of formal systems led to the formalization of the notion of algorithm and the re ..."
Abstract

Cited by 51 (0 self)
 Add to MetaCart
this article, I have attempted to organize and describe this literature, including an occasional opinion about the most fruitful directions, but no technical details. In the first half of this century, work on the power of formal systems led to the formalization of the notion of algorithm and the realization that certain problems are algorithmically unsolvable. At around this time, forerunners of the programmable computing machine were beginning to appear. As mathematicians contemplated the practical capabilities and limitations of such devices, computational complexity theory emerged from the theory of algorithmic unsolvability. Early on, a particular type of computational task became evident, where one is seeking an object which lies
Fixpoint Logics, Relational Machines, and Computational Complexity
 In Structure and Complexity
, 1993
"... We establish a general connection between fixpoint logic and complexity. On one side, we have fixpoint logic, parameterized by the choices of 1storder operators (inflationary or noninflationary) and iteration constructs (deterministic, nondeterministic, or alternating). On the other side, we have t ..."
Abstract

Cited by 37 (5 self)
 Add to MetaCart
We establish a general connection between fixpoint logic and complexity. On one side, we have fixpoint logic, parameterized by the choices of 1storder operators (inflationary or noninflationary) and iteration constructs (deterministic, nondeterministic, or alternating). On the other side, we have the complexity classes between P and EXPTIME. Our parameterized fixpoint logics capture the complexity classes P, NP, PSPACE, and EXPTIME, but equality is achieved only over ordered structures. There is, however, an inherent mismatch between complexity and logic  while computational devices work on encodings of problems, logic is applied directly to the underlying mathematical structures. To overcome this mismatch, we develop a theory of relational complexity, which bridges tha gap between standard complexity and fixpoint logic. On one hand, we show that questions about containments among standard complexity classes can be translated to questions about containments among relational complex...
Complexity Results for FirstOrder TwoVariable Logic with Counting
, 2000
"... Let C 2 p denote the class of first order sentences with two variables and with additional quantifiers "there exists exactly (at most, at least) i", for i p, and let C 2 be the union of C 2 p taken over all integers p. We prove that the satisfiability problem for C 2 1 sentences is NEXPTIMEcomplete ..."
Abstract

Cited by 28 (1 self)
 Add to MetaCart
Let C 2 p denote the class of first order sentences with two variables and with additional quantifiers "there exists exactly (at most, at least) i", for i p, and let C 2 be the union of C 2 p taken over all integers p. We prove that the satisfiability problem for C 2 1 sentences is NEXPTIMEcomplete. This strengthens the results by E. Grädel, Ph. Kolaitis and M. Vardi [15] who showed that the satisfiability problem for the first order twovariable logic L 2 is NEXPTIMEcomplete and by E. Grädel, M. Otto and E. Rosen [16] who proved the decidability of C 2 . Our result easily implies that the satisfiability problem for C 2 is in nondeterministic, doubly exponential time. It is interesting that C 2 1 is in NEXPTIME in spite of the fact, that there are sentences whose minimal (and only) models are of doubly exponential size. It is worth noticing, that by a recent result of E. Gradel, M. Otto and E. Rosen [17], extensions of twovariables logic L 2 by a week access to car...
FiniteModel Theory  A Personal Perspective
 Theoretical Computer Science
, 1993
"... Finitemodel theory is a study of the logical properties of finite mathematical structures. This paper is a very personalized view of finitemodel theory, where the author focuses on his own personal history, and results and problems of interest to him, especially those springing from work in his Ph ..."
Abstract

Cited by 20 (0 self)
 Add to MetaCart
Finitemodel theory is a study of the logical properties of finite mathematical structures. This paper is a very personalized view of finitemodel theory, where the author focuses on his own personal history, and results and problems of interest to him, especially those springing from work in his Ph.D. thesis. Among the topics discussed are:
A Short History of Computational Complexity
 IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY
, 2002
"... this article mention all of the amazing research in computational complexity theory. We survey various areas in complexity choosing papers more for their historical value than necessarily the importance of the results. We hope that this gives an insight into the richness and depth of this still quit ..."
Abstract

Cited by 11 (1 self)
 Add to MetaCart
this article mention all of the amazing research in computational complexity theory. We survey various areas in complexity choosing papers more for their historical value than necessarily the importance of the results. We hope that this gives an insight into the richness and depth of this still quite young eld
Spectra with Only Unary Function Symbols
, 1997
"... The spectrum of a firstorder sentence is the set of cardinalities of its finite models. This paper is concerned with spectra of sentences over languages that contain only unary function symbols. In particular, it is shown that a set S of natural numbers is the spectrum of a sentence over the langua ..."
Abstract

Cited by 9 (1 self)
 Add to MetaCart
The spectrum of a firstorder sentence is the set of cardinalities of its finite models. This paper is concerned with spectra of sentences over languages that contain only unary function symbols. In particular, it is shown that a set S of natural numbers is the spectrum of a sentence over the language of one unary function symbol precisely if S is an eventually periodic set.
Grounding for model expansion in kguarded formulas with inductive definitions
 In IJCAI
, 2007
"... Mitchell and Ternovska [2005] proposed a constraint programming framework based on classical logic extended with inductive definitions. They formulate a search problem as the problem of model expansion (MX), which is the problem of expanding a given structure with new relations so that it satisfies ..."
Abstract

Cited by 7 (4 self)
 Add to MetaCart
Mitchell and Ternovska [2005] proposed a constraint programming framework based on classical logic extended with inductive definitions. They formulate a search problem as the problem of model expansion (MX), which is the problem of expanding a given structure with new relations so that it satisfies a given formula. Their longterm goal is to produce practical tools to solve combinatorial search problems, especially those in NP. In this framework, a problem is encoded in a logic, an instance of the problem is represented by a finite structure, and a solver generates solutions to the problem. This approach relies on propositionalisation of highlevel specifications, and on the efficiency of modern SAT solvers. Here, we propose an efficient algorithm which combines grounding with partial evaluation. Since the MX framework is based on classical logic, we are able to take advantage of known results for the socalled guarded fragments. In the case of kguarded formulas with inductive definitions under a natural restriction, the algorithm performs much better than naive grounding by relying on connections between kguarded formulas and tree decompositions. 1
Computing on Structures
"... this paper various devices operating directly on structures, without encoding. The motivation and benefits for doing this are manyfold. On a fundamental level, encodings of structures seem to be a technical device rather than an intrinsic feature. This point has already been made by several mathemat ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
this paper various devices operating directly on structures, without encoding. The motivation and benefits for doing this are manyfold. On a fundamental level, encodings of structures seem to be a technical device rather than an intrinsic feature. This point has already been made by several mathematicians such as Tarski [Tar86], and Harvey Friedman [Fri71] (see Section 5). It has come up more recently in the context of databases, where devices computing on structures model more acurately database computation carried out against an abstract interface hiding the internal representation of data. Thus, the primary benefit of studying devices and languages computing on structures is that they clarify issues which are obscured in classical devices such as Turing machines. For example, they yield new notions of complexity, quite different from classical computational complexity. They reflect more acurately the actual complexity of computation, which, like database computation, cannot take advantage of encodings of structures. An example is provided by the query even on a set