Results 1 
4 of
4
Substructural Logical Specifications
, 2012
"... Any opinions, findings, conclusions or recommendations expressed in this publication are those of the author and A logical framework and its implementation should serve as a flexible tool for specifying, simulating, and reasoning about formal systems. When the formal systems we are interested in exh ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
Any opinions, findings, conclusions or recommendations expressed in this publication are those of the author and A logical framework and its implementation should serve as a flexible tool for specifying, simulating, and reasoning about formal systems. When the formal systems we are interested in exhibit state and concurrency, however, existing logical frameworks fall short of this goal. Logical frameworks based on a rewriting interpretation of substructural logics, ordered and linear logic in particular, can help. To this end, this dissertation introduces and demonstrates four methodologies for developing and using substructural logical frameworks for specifying and reasoning about stateful and concurrent systems. Structural focalization is a synthesis of ideas from Andreoli’s focused sequent calculi and Watkins’s hereditary substitution. We can use structural focalization to take a logic and define a restricted form of derivations, the focused derivations, that form the basis of a logical framework. We apply this methodology to define SLS, a logical framework for substructural logical specifications, as a fragment of ordered
MFPS 2011 Realization of Coinductive Types
"... We give an explicit combinatorial construction of final coalgebras for a modest generalization of polynomial functors on Set. Type signatures are modeled as directed multigraphs instead of endofunctors. The final coalgebra for a type signature F involves the notion of Brzozowski derivative on sets o ..."
Abstract
 Add to MetaCart
We give an explicit combinatorial construction of final coalgebras for a modest generalization of polynomial functors on Set. Type signatures are modeled as directed multigraphs instead of endofunctors. The final coalgebra for a type signature F involves the notion of Brzozowski derivative on sets of paths in F. Key words: derivative
Practical Coinduction
, 2012
"... Induction is a wellestablished proof principle that is taught in most undergraduate programs in mathematics and computer science. In computer science, it is used primarily to reason about inductivelydefined datatypes such as finite lists, finite trees, and the natural numbers. Coinduction is the d ..."
Abstract
 Add to MetaCart
Induction is a wellestablished proof principle that is taught in most undergraduate programs in mathematics and computer science. In computer science, it is used primarily to reason about inductivelydefined datatypes such as finite lists, finite trees, and the natural numbers. Coinduction is the dual principle that can be used to reason about coinductive datatypes such as infinite streams or trees, but it is not as widespread or as well understood. In this paper, we illustrate through several examples the use of coinduction in informal mathematical arguments. Our aim is to promote the principle as a useful tool for the working mathematician and to bring it to a level of familiarity on par with induction. We show that coinduction is not only about bisimilarity and equality of behaviors, but also applicable to a variety of functions and relations defined on coinductive datatypes. 1
CoCaml: Programming with Coinductive Types
, 2012
"... We present CoCaml, a functional programming language extending OCaml, which allows us to define functions on coinductive datatypes parameterized by an equation solver. We provide numerous examples that attest to the usefulness of the new programming constructs, including operations on infinite lists ..."
Abstract
 Add to MetaCart
We present CoCaml, a functional programming language extending OCaml, which allows us to define functions on coinductive datatypes parameterized by an equation solver. We provide numerous examples that attest to the usefulness of the new programming constructs, including operations on infinite lists, infinitary λterms and padic numbers.