Results 1  10
of
50
Robust Solutions To LeastSquares Problems With Uncertain Data
, 1997
"... . We consider leastsquares problems where the coefficient matrices A; b are unknownbutbounded. We minimize the worstcase residual error using (convex) secondorder cone programming, yielding an algorithm with complexity similar to one singular value decomposition of A. The method can be interpret ..."
Abstract

Cited by 149 (13 self)
 Add to MetaCart
. We consider leastsquares problems where the coefficient matrices A; b are unknownbutbounded. We minimize the worstcase residual error using (convex) secondorder cone programming, yielding an algorithm with complexity similar to one singular value decomposition of A. The method can be interpreted as a Tikhonov regularization procedure, with the advantage that it provides an exact bound on the robustness of solution, and a rigorous way to compute the regularization parameter. When the perturbation has a known (e.g., Toeplitz) structure, the same problem can be solved in polynomialtime using semidefinite programming (SDP). We also consider the case when A; b are rational functions of an unknownbutbounded perturbation vector. We show how to minimize (via SDP) upper bounds on the optimal worstcase residual. We provide numerical examples, including one from robust identification and one from robust interpolation. Key Words. Leastsquares, uncertainty, robustness, secondorder cone...
Robust minimum variance beamforming
 IEEE Transactions on Signal Processing
, 2005
"... Abstract—This paper introduces an extension of minimum variance beamforming that explicitly takes into account variation or uncertainty in the array response. Sources of this uncertainty include imprecise knowledge of the angle of arrival and uncertainty in the array manifold. In our method, uncerta ..."
Abstract

Cited by 62 (10 self)
 Add to MetaCart
Abstract—This paper introduces an extension of minimum variance beamforming that explicitly takes into account variation or uncertainty in the array response. Sources of this uncertainty include imprecise knowledge of the angle of arrival and uncertainty in the array manifold. In our method, uncertainty in the array manifold is explicitly modeled via an ellipsoid that gives the possible values of the array for a particular look direction. We choose weights that minimize the total weighted power output of the array, subject to the constraint that the gain should exceed unity for all array responses in this ellipsoid. The robust weight selection process can be cast as a secondorder cone program that can be solved efficiently using Lagrange multiplier techniques. If the ellipsoid reduces to a single point, the method coincides with Capon’s method. We describe in detail several methods that can be used to derive an appropriate uncertainty ellipsoid for the array response. We form separate uncertainty ellipsoids for each component in the signal path (e.g., antenna, electronics) and then determine an aggregate uncertainty ellipsoid from these. We give new results for modeling the elementwise products of ellipsoids. We demonstrate the robust beamforming and the ellipsoidal modeling methods with several numerical examples. Index Terms—Ellipsoidal calculus, Hadamard product, robust beamforming, secondorder cone programming.
A semidefinite framework for trust region subproblems with applications to large scale minimization
 Math. Programming
, 1997
"... This is an abbreviated revision of the University of Waterloo research report CORR 9432. y ..."
Abstract

Cited by 59 (8 self)
 Add to MetaCart
This is an abbreviated revision of the University of Waterloo research report CORR 9432. y
Indefinite Trust Region Subproblems And Nonsymmetric Eigenvalue Perturbations
, 1995
"... This paper extends the theory of trust region subproblems in two ways: (i) it allows indefinite inner products in the quadratic constraint and (ii) it uses a two sided (upper and lower bound) quadratic constraint. Characterizations of optimality are presented, which have no gap between necessity and ..."
Abstract

Cited by 58 (18 self)
 Add to MetaCart
This paper extends the theory of trust region subproblems in two ways: (i) it allows indefinite inner products in the quadratic constraint and (ii) it uses a two sided (upper and lower bound) quadratic constraint. Characterizations of optimality are presented, which have no gap between necessity and sufficiency. Conditions for the existence of solutions are given in terms of the definiteness of a matrix pencil. A simple dual program is intro...
A New MatrixFree Algorithm for the LargeScale TrustRegion Subproblem
, 1995
"... The trustregion subproblem arises frequently in linear algebra and optimization applications. Recently, matrixfree methods have been introduced to solve large scale trustregion subproblems. These methods only require a matrixvector product and do not rely on matrix factorizations [4, 7]. The ..."
Abstract

Cited by 48 (7 self)
 Add to MetaCart
The trustregion subproblem arises frequently in linear algebra and optimization applications. Recently, matrixfree methods have been introduced to solve large scale trustregion subproblems. These methods only require a matrixvector product and do not rely on matrix factorizations [4, 7]. These approaches recast the trust region subproblem in terms of a parameterized eigenvalue problem and then adjust the parameter to find the optimal solution from the eigenvector corresponding to the smallest eigenvalue of the parameterized eigenvalue problem. This paper presents a new matrixfree algorithm for the largescale trustregion subproblem. The new algorithm improves upon the previous algorithms by introducing a unified iteration that naturally includes the so called hard case. The new iteration is shown to be superlinearly convergent in all cases. Computational results are presented to illustrate convergence properties and robustness of the method.
Multiscale scientific computation: Review 2001
 Multiscale and Multiresolution Methods
, 2001
"... ..."
TrustRegion InteriorPoint SQP Algorithms For A Class Of Nonlinear Programming Problems
 SIAM J. CONTROL OPTIM
, 1997
"... In this paper a family of trustregion interiorpoint SQP algorithms for the solution of a class of minimization problems with nonlinear equality constraints and simple bounds on some of the variables is described and analyzed. Such nonlinear programs arise e.g. from the discretization of optimal co ..."
Abstract

Cited by 35 (8 self)
 Add to MetaCart
In this paper a family of trustregion interiorpoint SQP algorithms for the solution of a class of minimization problems with nonlinear equality constraints and simple bounds on some of the variables is described and analyzed. Such nonlinear programs arise e.g. from the discretization of optimal control problems. The algorithms treat states and controls as independent variables. They are designed to take advantage of the structure of the problem. In particular they do not rely on matrix factorizations of the linearized constraints, but use solutions of the linearized state equation and the adjoint equation. They are well suited for large scale problems arising from optimal control problems governed by partial differential equations. The algorithms keep strict feasibility with respect to the bound constraints by using an affine scaling method proposed for a different class of problems by Coleman and Li and they exploit trustregion techniques for equalityconstrained optimizatio...
Bounds for the entries of matrix functions with applications to preconditioning
 BIT
, 1999
"... Let A be a symmetric matrix and let f be a smooth function defined on an interval containing the spectrum of A. Generalizing a wellknown result of Demko, Moss and Smith on the decay of the inverse we show that when A is banded, the entries of f(A)are bounded in an exponentially decaying manner away ..."
Abstract

Cited by 34 (15 self)
 Add to MetaCart
Let A be a symmetric matrix and let f be a smooth function defined on an interval containing the spectrum of A. Generalizing a wellknown result of Demko, Moss and Smith on the decay of the inverse we show that when A is banded, the entries of f(A)are bounded in an exponentially decaying manner away from the main diagonal. Bounds obtained by representing the entries of f(A) in terms of Riemann–Stieltjes integrals and by approximating such integrals by Gaussian quadrature rules are also considered. Applications of these bounds to preconditioning are suggested and illustrated by a few numerical examples.
The LCurve and its Use in the Numerical Treatment of Inverse Problems
 in Computational Inverse Problems in Electrocardiology, ed. P. Johnston, Advances in Computational Bioengineering
, 2000
"... The Lcurve is a loglog plot of the norm of a regularized solution versus the norm of the corresponding residual norm. It is a convenient graphical tool for displaying the tradeoff between the size of a regularized solution and its fit to the given data, as the regularization parameter varies. The ..."
Abstract

Cited by 29 (2 self)
 Add to MetaCart
The Lcurve is a loglog plot of the norm of a regularized solution versus the norm of the corresponding residual norm. It is a convenient graphical tool for displaying the tradeoff between the size of a regularized solution and its fit to the given data, as the regularization parameter varies. The Lcurve thus gives insight into the regularizing properties of the underlying regularization method, and it is an aid in choosing an appropriate regularization parameter for the given data. In this chapter we summarize the main properties of the Lcurve, and demonstrate by examples its usefulness and its limitations both as an analysis tool and as a method for choosing the regularization parameter. 1 Introduction Practically all regularization methods for computing stable solutions to inverse problems involve a tradeoff between the "size" of the regularized solution and the quality of the fit that it provides to the given data. What distinguishes the various regularization methods is how...
Estimates in Quadratic Formulas
, 1994
"... Let A be a real symmetric positive definite matrix. We consider three particular questions, namely estimates for the error in linear systems Ax = b, minimizing quadratic functional min x (x T Ax \Gamma 2b T x) subject to the constraint k x k= ff, ff !k A \Gamma1 b k, and estimates for the e ..."
Abstract

Cited by 26 (7 self)
 Add to MetaCart
Let A be a real symmetric positive definite matrix. We consider three particular questions, namely estimates for the error in linear systems Ax = b, minimizing quadratic functional min x (x T Ax \Gamma 2b T x) subject to the constraint k x k= ff, ff !k A \Gamma1 b k, and estimates for the entries of the matrix inverse A \Gamma1 . All of these questions can be formulated as a problem of finding an estimate or an upper and lower bound on u T F (A)u, where F (A) = A \Gamma1 resp. F (A) = A \Gamma2 , u is a real vector. This problem can be considered in terms of estimates in the Gaußtype quadrature formulas which can be effectively computed exploiting the underlying Lanczos process. Using this approach, we first recall the exact arithmetic solution of the questions formulated above and then analyze the effect of rounding errors in the quadrature calculations. It is proved that the basic relation between the accuracy of Gauß quadrature for f() = \Gamma1 and the rate of ...