Results 1 
1 of
1
PERFECT POWERS: PILLAI’S WORKS AND THEIR DEVELOPMENTS
, 2009
"... Abstract. A perfect power is a positive integer of the form ax where a ≥ 1 and x ≥ 2 are rational integers. Subbayya Sivasankaranarayana Pillai wrote several papers on these numbers. In 1936 and again in 1945 he suggested that for any given k ≥ 1, the number of positive integer solutions (a, b, x, y ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
Abstract. A perfect power is a positive integer of the form ax where a ≥ 1 and x ≥ 2 are rational integers. Subbayya Sivasankaranarayana Pillai wrote several papers on these numbers. In 1936 and again in 1945 he suggested that for any given k ≥ 1, the number of positive integer solutions (a, b, x, y), with x ≥ 2 and y ≥ 2, to the Diophantine equation ax − by = k is finite. This conjecture amounts to saying that the distance between two consecutive elements in the sequence of perfect powers tends to infinity. After a short introduction to Pillai’s work on Diophantine questions, we quote some later developments and we discuss related open problems.