Results 1  10
of
50
The Quickhull algorithm for convex hulls
 ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE
, 1996
"... The convex hull of a set of points is the smallest convex set that contains the points. This article presents a practical convex hull algorithm that combines the twodimensional Quickhull Algorithm with the generaldimension BeneathBeyond Algorithm. It is similar to the randomized, incremental algo ..."
Abstract

Cited by 452 (0 self)
 Add to MetaCart
The convex hull of a set of points is the smallest convex set that contains the points. This article presents a practical convex hull algorithm that combines the twodimensional Quickhull Algorithm with the generaldimension BeneathBeyond Algorithm. It is similar to the randomized, incremental algorithms for convex hull and Delaunay triangulation. We provide empirical evidence that the algorithm runs faster when the input contains nonextreme points and that it uses less memory. Computational geometry algorithms have traditionally assumed that input sets are well behaved. When an algorithm is implemented with floatingpoint arithmetic, this assumption can lead to serious errors. We briefly describe a solution to this problem when computing the convex hull in two, three, or four dimensions. The output is a set of “thick ” facets that contain all possible exact convex hulls of the input. A variation is effective in five or more dimensions.
Voronoi Diagrams and Delaunay Triangulations
 Computing in Euclidean Geometry
, 1992
"... The Voronoi diagram is a fundamental structure in computationalgeometry and arises naturally in many different fields. This chapter surveys properties of the Voronoi diagram and its geometric dual, the Delaunay triangulation. The emphasis is on practical algorithms for the construction of Voronoi ..."
Abstract

Cited by 196 (3 self)
 Add to MetaCart
The Voronoi diagram is a fundamental structure in computationalgeometry and arises naturally in many different fields. This chapter surveys properties of the Voronoi diagram and its geometric dual, the Delaunay triangulation. The emphasis is on practical algorithms for the construction of Voronoi diagrams. 1 Introduction Let S be a set of n points in ddimensional euclidean space E d . The points of S are called sites. The Voronoi diagram of S splits E d into regions with one region for each site, so that the points in the region for site s2S are closer to s than to any other site in S. The Delaunay triangulation of S is the unique triangulation of S so that there are no elements of S inside the circumsphere of any triangle. Here `triangulation' is extended from the planar usage to arbitrary dimension: a triangulation decomposes the convex hull of S into simplices using elements of S as vertices. The existence and uniqueness of the Delaunay triangulation are perhaps not obvio...
Mesh Generation And Optimal Triangulation
, 1992
"... We survey the computational geometry relevant to finite element mesh generation. We especially focus on optimal triangulations of geometric domains in two and threedimensions. An optimal triangulation is a partition of the domain into triangles or tetrahedra, that is best according to some cri ..."
Abstract

Cited by 179 (7 self)
 Add to MetaCart
We survey the computational geometry relevant to finite element mesh generation. We especially focus on optimal triangulations of geometric domains in two and threedimensions. An optimal triangulation is a partition of the domain into triangles or tetrahedra, that is best according to some criterion that measures the size, shape, or number of triangles. We discuss algorithms both for the optimization of triangulations on a fixed set of vertices and for the placement of new vertices (Steiner points). We briefly survey the heuristic algorithms used in some practical mesh generators.
Voronoi Diagrams
 Handbook of Computational Geometry
"... Voronoi diagrams can also be thought of as lower envelopes, in the sense mentioned at the beginning of this subsection. Namely, for each point x not situated on a bisecting curve, the relation p x q defines a total ordering on S. If we construct a set of surfaces H p , p S,in3space such t ..."
Abstract

Cited by 143 (20 self)
 Add to MetaCart
Voronoi diagrams can also be thought of as lower envelopes, in the sense mentioned at the beginning of this subsection. Namely, for each point x not situated on a bisecting curve, the relation p x q defines a total ordering on S. If we construct a set of surfaces H p , p S,in3space such that H p is below H q i# p x q holds, then the projection of their lower envelope equals the abstract Voronoi diagram.
A Comparison of Sequential Delaunay Triangulation Algorithms
, 1996
"... This paper presents an experimental comparison of a number of different algorithms for computing the Deluanay triangulation. The algorithms examined are: Dwyer’s divide and conquer algorithm, Fortune’s sweepline algorithm, several versions of the incremental algorithm (including one by Ohya, Iri, an ..."
Abstract

Cited by 54 (0 self)
 Add to MetaCart
This paper presents an experimental comparison of a number of different algorithms for computing the Deluanay triangulation. The algorithms examined are: Dwyer’s divide and conquer algorithm, Fortune’s sweepline algorithm, several versions of the incremental algorithm (including one by Ohya, Iri, and Murota, a new bucketingbased algorithm described in this paper, and Devillers’s version of a Delaunaytree based algorithm that appears in LEDA), an algorithm that incrementally adds a correct Delaunay triangle adjacent to a current triangle in a manner similar to gift wrapping algorithms for convex hulls, and Barber’s convex hull based algorithm. Most of the algorithms examined are designed for good performance on uniformly distributed sites. However, we also test implementations of these algorithms on a number of nonuniform distibutions. The experiments go beyond measuring total running time, which tends to be machinedependent. We also analyze the major highlevel primitives that algorithms use and do an experimental analysis of how often implementations of these algorithms perform each operation.
A Randomized Parallel 3D Convex Hull Algorithm For Coarse Grained Multicomputers
 In Proc. ACM Symp. on Parallel Algorithms and Architectures
, 1995
"... We present a randomized parallel algorithm for constructing the 3D convex hull on a generic pprocessor coarse grained multicomputer with arbitrary interconection network and n=p local memory per processor, where n=p p 2+ffl (for some arbitrarily small ffl ? 0). For any given set of n points in ..."
Abstract

Cited by 50 (11 self)
 Add to MetaCart
We present a randomized parallel algorithm for constructing the 3D convex hull on a generic pprocessor coarse grained multicomputer with arbitrary interconection network and n=p local memory per processor, where n=p p 2+ffl (for some arbitrarily small ffl ? 0). For any given set of n points in 3space, the algorithm computes the 3D convex hull, with high probaility, in O( n log n p ) local computation time and O(1) communication phases with at most O(n=p) data sent/received by each processor. That is, with high probability, the algorithm computes the 3D convex hull of an arbitrary point set in time O( n logn p + \Gamma n;p ), where \Gamma n;p denotes the time complexity of one communication phase. The assumption n p p 2+ffl implies a coarse grained, limited parallelism, model which is applicable to most commercially available multiprocessors. In the terminology of the BSP model, our algorithm requires, with high probability, O(1) supersteps, synchronization period L = \Th...
Mesh Generation
 Handbook of Computational Geometry. Elsevier Science
, 2000
"... this article, we emphasize practical issues; an earlier survey by Bern and Eppstein [24] emphasized theoretical results. Although there is inevitably some overlap between these two surveys, we intend them to be complementary. ..."
Abstract

Cited by 48 (6 self)
 Add to MetaCart
this article, we emphasize practical issues; an earlier survey by Bern and Eppstein [24] emphasized theoretical results. Although there is inevitably some overlap between these two surveys, we intend them to be complementary.
Voronoi Diagrams of Moving Points
, 1995
"... Consider a set of n points in ddimensional Euclidean space, d 2, each of which is continuously moving along a given individual trajectory. At each instant in time, the points define a Voronoi diagram. As the points move, the Voronoi diagram changes continuously, but at certain critical instants in ..."
Abstract

Cited by 46 (6 self)
 Add to MetaCart
Consider a set of n points in ddimensional Euclidean space, d 2, each of which is continuously moving along a given individual trajectory. At each instant in time, the points define a Voronoi diagram. As the points move, the Voronoi diagram changes continuously, but at certain critical instants in time, topological events occur that cause a change in the Voronoi diagram. In this paper, we present a method of maintaining the Voronoi diagram over time, while showing that the number of topological events has an upper bound of O(n d s (n)), where s (n) is the maximum length of a (n; s)DavenportSchinzel sequence [AgShSh 89, DaSc 65] and s is a constant depending on the motions of the point sites. Our results are a linearfactor improvement over the naive O(n d+2 ) upper bound on the number of topological events. In addition, we show that if only k points are moving (while leaving the other n \Gamma k points fixed), there is an upper bound of O(kn d\Gamma1 s (n) + (n \Gamma k)...
On Bregman Voronoi Diagrams
 in "Proc. 18th ACMSIAM Sympos. Discrete Algorithms
, 2007
"... The Voronoi diagram of a point set is a fundamental geometric structure that partitions the space into elementary regions of influence defining a discrete proximity graph and dually a wellshaped Delaunay triangulation. In this paper, we investigate a framework for defining and building the Voronoi ..."
Abstract

Cited by 42 (22 self)
 Add to MetaCart
The Voronoi diagram of a point set is a fundamental geometric structure that partitions the space into elementary regions of influence defining a discrete proximity graph and dually a wellshaped Delaunay triangulation. In this paper, we investigate a framework for defining and building the Voronoi diagrams for a broad class of distortion measures called Bregman divergences, that includes not only the traditional (squared) Euclidean distance, but also various divergence measures based on entropic functions. As a byproduct, Bregman Voronoi diagrams allow one to define informationtheoretic Voronoi diagrams in statistical parametric spaces based on the relative entropy of distributions. We show that for a given Bregman divergence, one can define several types of Voronoi diagrams related to each other
Automatic Surface Reconstruction From Point Sets in Space
 Computer Graphics Forum
, 2000
"... In this paper an algorithm is proposed that takes as input a generic set of unorganized points, sampled on a real object, and returns a closed interpolating surface. Specifically, this method generates a closed 2manifold surface made of triangular faces, without limitations on the shape or genus of ..."
Abstract

Cited by 38 (5 self)
 Add to MetaCart
In this paper an algorithm is proposed that takes as input a generic set of unorganized points, sampled on a real object, and returns a closed interpolating surface. Specifically, this method generates a closed 2manifold surface made of triangular faces, without limitations on the shape or genus of the original solid. The reconstruction method is based on generation of the Delaunay tetrahedralization of the point set, followed by a sculpturing process constrained to particular criteria. The main applications of this tool are in medical analysis and in reverse engineering areas. It is possible, for example, to reconstruct anatomical parts starting from surveys based on TACs or magnetic resonance.