Results 1  10
of
125
A Framework for Defining Logics
 JOURNAL OF THE ASSOCIATION FOR COMPUTING MACHINERY
, 1993
"... The Edinburgh Logical Framework (LF) provides a means to define (or present) logics. It is based on a general treatment of syntax, rules, and proofs by means of a typed calculus with dependent types. Syntax is treated in a style similar to, but more general than, MartinLof's system of arities. T ..."
Abstract

Cited by 696 (39 self)
 Add to MetaCart
The Edinburgh Logical Framework (LF) provides a means to define (or present) logics. It is based on a general treatment of syntax, rules, and proofs by means of a typed calculus with dependent types. Syntax is treated in a style similar to, but more general than, MartinLof's system of arities. The treatment of rules and proofs focuses on his notion of a judgement. Logics are represented in LF via a new principle, the judgements as types principle, whereby each judgement is identified with the type of its proofs. This allows for a smooth treatment of discharge and variable occurrence conditions and leads to a uniform treatment of rules and proofs whereby rules are viewed as proofs of higherorder judgements and proof checking is reduced to type checking. The practical benefit of our treatment of formal systems is that logicindependent tools such as proof editors and proof checkers can be constructed.
System Description: Twelf  A MetaLogical Framework for Deductive Systems
 Proceedings of the 16th International Conference on Automated Deduction (CADE16
, 1999
"... . Twelf is a metalogical framework for the specification, implementation, and metatheory of deductive systems from the theory of programming languages and logics. It relies on the LF type theory and the judgmentsastypes methodology for specification [HHP93], a constraint logic programming interp ..."
Abstract

Cited by 315 (49 self)
 Add to MetaCart
. Twelf is a metalogical framework for the specification, implementation, and metatheory of deductive systems from the theory of programming languages and logics. It relies on the LF type theory and the judgmentsastypes methodology for specification [HHP93], a constraint logic programming interpreter for implementation [Pfe91], and the metalogic M2 for reasoning about object languages encoded in LF [SP98]. It is a significant extension and complete reimplementation of the Elf system [Pfe94]. Twelf is written in Standard ML and runs under SML of New Jersey and MLWorks on Unix and Window platforms. The current version (1.2) is distributed with a complete manual, example suites, a tutorial in the form of online lecture notes [Pfe], and an Emacs interface. Source and binary distributions are accessible via the Twelf home page http://www.cs.cmu.edu/~twelf. 1 The Twelf System The Twelf system is a tool for experimentation in the theory of programming languages and logics. It supports...
A Linear Logical Framework
, 1996
"... We present the linear type theory LLF as the forAppeared in the proceedings of the Eleventh Annual IEEE Symposium on Logic in Computer Science  LICS'96 (E. Clarke editor), pp. 264275, New Brunswick, NJ, July 2730 1996. mal basis for a conservative extension of the LF logical framework. LLF c ..."
Abstract

Cited by 217 (44 self)
 Add to MetaCart
We present the linear type theory LLF as the forAppeared in the proceedings of the Eleventh Annual IEEE Symposium on Logic in Computer Science  LICS'96 (E. Clarke editor), pp. 264275, New Brunswick, NJ, July 2730 1996. mal basis for a conservative extension of the LF logical framework. LLF combines the expressive power of dependent types with linear logic to permit the natural and concise representation of a whole new class of deductive systems, namely those dealing with state. As an example we encode a version of MiniML with references including its type system, its operational semantics, and a proof of type preservation. Another example is the encoding of a sequent calculus for classical linear logic and its cut elimination theorem. LLF can also be given an operational interpretation as a logic programming language under which the representations above can be used for type inference, evaluation and cutelimination. 1 Introduction A logical framework is a formal system desig...
Typedirected partial evaluation
 Proceedings of the TwentyThird Annual ACM Symposium on Principles of Programming Languages
, 1996
"... Abstract. Typedirected partial evaluation stems from the residualization of arbitrary static values in dynamic contexts, given their type. Its algorithm coincides with the one for coercing asubtype value into a supertype value, which itself coincides with the one of normalization in thecalculus. T ..."
Abstract

Cited by 207 (39 self)
 Add to MetaCart
Abstract. Typedirected partial evaluation stems from the residualization of arbitrary static values in dynamic contexts, given their type. Its algorithm coincides with the one for coercing asubtype value into a supertype value, which itself coincides with the one of normalization in thecalculus. Typedirected partial evaluation is thus used to specialize compiled, closed programs, given their type. Since Similix, letinsertion is a cornerstone of partial evaluators for callbyvalue procedural programs with computational e ects. It prevents the duplication of residual computations, and more generally maintains the order of dynamic side e ects in residual programs. This article describes the extension of typedirected partial evaluation to insert residual let expressions. This extension requires the userto annotate arrowtypes with e ect information. It is achieved by delimiting and abstracting control, comparably to continuationbased specialization in direct style. It enables typedirected partial evaluation of e ectful programs (e.g.,ade nitional lambdainterpreter for an imperative language) that are in direct style. The residual programs are in Anormal form. 1
A Modal Analysis of Staged Computation
 JOURNAL OF THE ACM
, 1996
"... We show that a type system based on the intuitionistic modal logic S4 provides an expressive framework for specifying and analyzing computation stages in the context of functional languages. Our main technical result is a conservative embedding of Nielson & Nielson's twolevel functional language in ..."
Abstract

Cited by 185 (22 self)
 Add to MetaCart
We show that a type system based on the intuitionistic modal logic S4 provides an expressive framework for specifying and analyzing computation stages in the context of functional languages. Our main technical result is a conservative embedding of Nielson & Nielson's twolevel functional language in our language MiniML, which in
A Certifying Compiler for Java
 ACM SIGPLAN Notices
, 2000
"... This paper presents the initial results of a project to determine if the techniques of proofcarrying code and certifying compilers can be applied to programming languages of realistic size and complexity. The experiment shows that: (1) it is possible to implement a certifying nativecode compiler f ..."
Abstract

Cited by 130 (15 self)
 Add to MetaCart
This paper presents the initial results of a project to determine if the techniques of proofcarrying code and certifying compilers can be applied to programming languages of realistic size and complexity. The experiment shows that: (1) it is possible to implement a certifying nativecode compiler for a large subset of the Java programming language; (2) the compiler is freely able to apply many standard local and global optimizations; and (3) the PCC binaries it produces are of reasonable size and can be rapidly checked for type safety by a small proofchecker. This paper also presents further evidence that PCC provides several advantages for compiler development. In particular, generating proofs of the target code helps to identify compiler bugs, many of which would have been dicult to discover by testing.
A semantic model of types and machine instructions for proofcarrying code
 In Principles of Programming Languages
"... Proofcarrying code is a framework for proving the safety of machinelanguage programs with a machinecheckable proof. Such proofs have previously defined typechecking rules as part of the logic. We show a universal type framework for proofcarrying code that will allow a code producer to choose a p ..."
Abstract

Cited by 127 (17 self)
 Add to MetaCart
Proofcarrying code is a framework for proving the safety of machinelanguage programs with a machinecheckable proof. Such proofs have previously defined typechecking rules as part of the logic. We show a universal type framework for proofcarrying code that will allow a code producer to choose a programming language, prove the type rules for that language as lemmas in higherorder logic, then use those lemmas to prove the safety of a particular program. We show how to handle traversal, allocation, and initialization of values in a wide variety of types, including functions, records, unions, existentials, and covariant recursive types. 1
Primitive Recursion for HigherOrder Abstract Syntax
 Theoretical Computer Science
, 1997
"... ..."
Pattern matching with dependent types
 In Proceedings of the Workshop on Types for Proofs and Programs
, 1992
"... ..."
A temporallogic approach to bindingtime analysis
 In Proceedings, 11 th Annual IEEE Symposium on Logic in Computer Science
, 1996
"... is permitted for educational or research use on condition that this copyright notice is included in any copy. See back inner page for a list of recent publications in the BRICS Report Series. Copies may be obtained by contacting: BRICS ..."
Abstract

Cited by 80 (5 self)
 Add to MetaCart
is permitted for educational or research use on condition that this copyright notice is included in any copy. See back inner page for a list of recent publications in the BRICS Report Series. Copies may be obtained by contacting: BRICS