Results 1  10
of
34
Manysorted coalgebraic modal logic: a modeltheoretic study
 Theor. Inform. Appl
"... ..."
(Show Context)
The Coalgebraic Class Specification Language CCSL  Syntax and Semantics
, 2002
"... ..."
(Show Context)
Coalgebras and Modal Logic
 Coalgebraic Methods in Computer Science, Volume 33 in Electronic Notes in Theoretical Computer Science
, 2000
"... Coalgebras are of growing importance in theoretical computer science. To develop languages for them is significant for the specification and verification of systems modelled with them. Modal logic has proved to be suitable for this purpose. So far, most approaches have presented a language to descri ..."
Abstract

Cited by 35 (0 self)
 Add to MetaCart
Coalgebras are of growing importance in theoretical computer science. To develop languages for them is significant for the specification and verification of systems modelled with them. Modal logic has proved to be suitable for this purpose. So far, most approaches have presented a language to describe only deterministic coalgebras. The present paper introduces a generalization that also covers nondeterministic systems. As a special case, we obtain the "usual" modal logic for Kripkestructures. Models for our modal language L F are Fcoalgebras where the functor F is inductively constructed from constant sets and the identity functor using product, coproduct, exponentiation, and the power set functor. We define a language L F and show that it embeds into L F . We prove that, for imagefinite coalgebras, L F is expressive enough to distinguish elements up to bisimilarity and therefore L F does so, too. Moreover, we also give a complete calculus for L F in case the constants...
Semantical Principles in the Modal Logic of Coalgebraic
"... Coalgebras for a functor on the category of sets subsume many formulations of the notion of transition system, including labelled transition systems, Kripke models, Kripke frames and many types of automata. This paper presents a multimodal language which is bisimulation invariant and (under a natur ..."
Abstract

Cited by 31 (7 self)
 Add to MetaCart
Coalgebras for a functor on the category of sets subsume many formulations of the notion of transition system, including labelled transition systems, Kripke models, Kripke frames and many types of automata. This paper presents a multimodal language which is bisimulation invariant and (under a natural completeness condition) expressive enough to characterise elements of the underlying state space up to bisimulation. Like Moss' coalgebraic logic, the theory can be applied to an arbitrary signature functor on the category of sets. Also, an upper bound for the size of conjunctions and disjunctions needed to obtain characteristic formulas is given.
Towards a Duality Result in the Modal Logic of Coalgebras
 In Coalgebraic Methods in Computer Science, volume 33 of ENTCS
, 2000
"... This paper forms a step in the development of the recently emerged connection between coalgebra and modal logic. It introduces (backandforth) transformations between coalgebras of simple polynomial functors and certain Boolean algebras with operators (BAOs). Categorically, these transformations ta ..."
Abstract

Cited by 20 (0 self)
 Add to MetaCart
(Show Context)
This paper forms a step in the development of the recently emerged connection between coalgebra and modal logic. It introduces (backandforth) transformations between coalgebras of simple polynomial functors and certain Boolean algebras with operators (BAOs). Categorically, these transformations take the form of an adjunction. The BAO associated with a coalgebra can be used for specification, e.g. of classes in objectoriented languages.
Simulations in Coalgebra
 THEOR. COMP. SCI
, 2003
"... A new approach to simulations is proposed within the theory of coalgebras by taking a notion of order on a functor as primitive. Such an order forms a basic building block for a "lax relation lifting", or "relator" as used by other authors. Simulations appear as coalgebras of thi ..."
Abstract

Cited by 19 (1 self)
 Add to MetaCart
(Show Context)
A new approach to simulations is proposed within the theory of coalgebras by taking a notion of order on a functor as primitive. Such an order forms a basic building block for a "lax relation lifting", or "relator" as used by other authors. Simulations appear as coalgebras of this lifted functor, and similarity as greatest simulation. Twoway similarity is then similarity in both directions. In general, it is different from bisimilarity (in the usual coalgebraic sense), but a su#cient condition is formulated (and illustrated) to ensure that bisimilarity and twoway similarity coincide. Also, suitable conditions are identified which ensures that similarity on a final coalgebra forms an (algebraic) dcpo structure. This involves a close investigation of the iterated applications F (#) and F (1) of a functor F with an order to the initial and final sets.
Exercises in Coalgebraic Specification
, 1999
"... An introduction to coalgebraic specification is presented via examples. A coalgebraic specification describes a collection of coalgebras satisfying certain assertions. It is thus an axiomatic description of a particular class of mathematical structures. Such specifications are especially suitable fo ..."
Abstract

Cited by 18 (3 self)
 Add to MetaCart
An introduction to coalgebraic specification is presented via examples. A coalgebraic specification describes a collection of coalgebras satisfying certain assertions. It is thus an axiomatic description of a particular class of mathematical structures. Such specifications are especially suitable for statebased dynamical systems in general, and for classes in objectoriented programming languages in particular. This paper will gradually introduce the notions of bisimilarity, invariance, component classes, temporal logic and refinement in a coalgebraic setting. Besides the running example of the coalgebraic specification of (possibly infinite) binary trees, a specification of Peterson's mutual exclusion algorithm is elaborated in detail.
Automata and fixed point logics: a coalgebraic perspective
 Electronic Notes in Theoretical Computer Science
, 2004
"... This paper generalizes existing connections between automata and logic to a coalgebraic level. Let F: Set → Set be a standard functor that preserves weak pullbacks. We introduce various notions of Fautomata, devices that operate on pointed Fcoalgebras. The criterion under which such an automaton a ..."
Abstract

Cited by 16 (8 self)
 Add to MetaCart
(Show Context)
This paper generalizes existing connections between automata and logic to a coalgebraic level. Let F: Set → Set be a standard functor that preserves weak pullbacks. We introduce various notions of Fautomata, devices that operate on pointed Fcoalgebras. The criterion under which such an automaton accepts or rejects a pointed coalgebra is formulated in terms of an infinite twoplayer graph game. We also introduce a language of coalgebraic fixed point logic for Fcoalgebras, and we provide a game semantics for this language. Finally we show that any formula p of the language can be transformed into an Fautomaton Ap which is equivalent to p in the sense that Ap accepts precisely those pointed Fcoalgebras in which p holds.
Coalgebraic Modal Logic of Finite Rank
, 2002
"... This paper studies coalgebras from the perspective of finite observations. We introduce the notion of finite step equivalence and a corresponding category with finite step equivalencepreserving morphisms. This category always has a final object, which generalises the canonical model construction fr ..."
Abstract

Cited by 15 (8 self)
 Add to MetaCart
(Show Context)
This paper studies coalgebras from the perspective of finite observations. We introduce the notion of finite step equivalence and a corresponding category with finite step equivalencepreserving morphisms. This category always has a final object, which generalises the canonical model construction from Kripke models to coalgebras. We then turn to logics whose formulae are invariant under finite step equivalence, which we call logics of rank . For these logics, we use topological methods and give a characterisation of compact logics and definable classes of models.
Components as processes: An exercise in coalgebraic modeling
 FMOODS’2000  Formal Methods for Open ObjectOriented Distributed Systems
, 2000
"... Abstract Software components, arising, typically, in systems ’ analysis and design, are characterized by a public interface and a private encapsulated state. They persist (and evolve) in time, according to some behavioural patterns. This paper is an exercise in modeling such components as coalgebras ..."
Abstract

Cited by 14 (6 self)
 Add to MetaCart
(Show Context)
Abstract Software components, arising, typically, in systems ’ analysis and design, are characterized by a public interface and a private encapsulated state. They persist (and evolve) in time, according to some behavioural patterns. This paper is an exercise in modeling such components as coalgebras for some kinds of endofunctors on ¢¡¤ £ , capturing both (interface) types and behavioural aspects. The construction of component categories, cofibred over the interface space, emerges by generalizing the usual notion of a coalgebra morphism. A collection of composition operators as well as a generic notion of bisimilarity, are discussed.