Results 11  20
of
85
Boundedness And Complete Distributivity
 IV, Appl. Categ. Structures
"... . We extend the concept of constructive complete distributivity so as to make it applicable to ordered sets admitting merely bounded suprema. The KZdoctrine for bounded suprema is of some independent interest and a few results about it are given. The 2category of ordered sets admitting bounded ..."
Abstract

Cited by 16 (7 self)
 Add to MetaCart
. We extend the concept of constructive complete distributivity so as to make it applicable to ordered sets admitting merely bounded suprema. The KZdoctrine for bounded suprema is of some independent interest and a few results about it are given. The 2category of ordered sets admitting bounded suprema over which nonempty infima distribute is shown to be biequivalent to a 2category defined in terms of idempotent relations. As a corollary we obtain a simple construction of the nonnegative reals. 1. Introduction 1.1. The main theorem of [RW1] exhibited a biequivalence between the 2category of (constructively) completely distributive lattices and suppreserving arrows, and the idempotent splitting completion of the 2category of relations  relative to any base topos. Somewhat in passing in [RW1], it was pointed out that this biequivalence provides a simple construction of the closed unit interval ([0; 1]; ), namely as the ordered set of downsets for the idempotent relat...
Generalized Ultrametric Spaces: Completion, Topology, and Powerdomains via the Yoneda Embedding
, 1995
"... Generalized ultrametric spaces are a common generalization of preorders and ordinary ultrametric spaces (Lawvere 1973, Rutten 1995). Combining Lawvere's (1973) enrichedcategorical and Smyth' (1987, 1991) topological view on generalized (ultra)metric spaces, it is shown how to construct 1. completion ..."
Abstract

Cited by 15 (5 self)
 Add to MetaCart
Generalized ultrametric spaces are a common generalization of preorders and ordinary ultrametric spaces (Lawvere 1973, Rutten 1995). Combining Lawvere's (1973) enrichedcategorical and Smyth' (1987, 1991) topological view on generalized (ultra)metric spaces, it is shown how to construct 1. completion, 2. topology, and 3. powerdomains for generalized ultrametric spaces. Restricted to the special cases of preorders and ordinary ultrametric spaces, these constructions yield, respectively: 1. chain completion and Cauchy completion; 2. the Alexandroff and the Scott topology, and the fflball topology; 3. lower, upper, and convex powerdomains, and the powerdomain of compact subsets. Interestingly, all constructions are formulated in terms of (an ultrametric version of) the Yoneda (1954) lemma.
On Relating Some Models for Concurrency
 TAPSOFT'93: Theory and Practice of Software Development, volume 668 of Lecture Notes in Computer Science
, 1993
"... s are available from the same host in the directory /pub/TR/UBLCS/ABSTRACTS in plain text format. All local authors can be reached via email at the address lastname@cs.unibo.it. UBLCS Technical Report Series 931 Consistent Global States of Distributed Systems: Fundamental Concepts and Mechanism, ..."
Abstract

Cited by 13 (1 self)
 Add to MetaCart
s are available from the same host in the directory /pub/TR/UBLCS/ABSTRACTS in plain text format. All local authors can be reached via email at the address lastname@cs.unibo.it. UBLCS Technical Report Series 931 Consistent Global States of Distributed Systems: Fundamental Concepts and Mechanism, by O. Babao glu and K. Marzullo, January 1993. 932 Understanding NonBlocking Atomic Commitment, by O. Babao glu and S. Toueg, January 1993. 933 Anchors and Paths in a Hypertext Publishing System, by C. Maioli and F. Vitali, February 1993. 934 A Formalization of Priority Inversion, by O. Babao glu, K. Marzullo and F. Schneider, March 1993. 935 Some Modifications to the Dexter Model for the Formal Description of Hypertexts, by S. Lamberti, C. Maioli and F. Vitali, April 1993. 936 Versioning Issues in a Collaborative Distributed Hypertext System, by C. Maioli, S. Sola and F. Vitali, April 1993. 937 Distributed Programming with Logic Tuple Spaces, by P. Ciancarini, April 1993. 938 Coord...
Exact Completions and Toposes
 University of Edinburgh
, 2000
"... Toposes and quasitoposes have been shown to be useful in mathematics, logic and computer science. Because of this, it is important to understand the di#erent ways in which they can be constructed. Realizability toposes and presheaf toposes are two important classes of toposes. All of the former and ..."
Abstract

Cited by 13 (4 self)
 Add to MetaCart
Toposes and quasitoposes have been shown to be useful in mathematics, logic and computer science. Because of this, it is important to understand the di#erent ways in which they can be constructed. Realizability toposes and presheaf toposes are two important classes of toposes. All of the former and many of the latter arise by adding "good " quotients of equivalence relations to a simple category with finite limits. This construction is called the exact completion of the original category. Exact completions are not always toposes and it was not known, not even in the realizability and presheaf cases, when or why toposes arise in this way. Exact completions can be obtained as the composition of two related constructions. The first one assigns to a category with finite limits, the "best " regular category (called its regular completion) that embeds it. The second assigns to
Directed combinatorial homology and noncommutative tori (The breaking of symmetries in algebraic topology)
"... This is a brief study of the homology of cubical sets, with two main purposes. First, this combinatorial structure is viewed as representing directed spaces, breaking the intrinsic symmetries of topological spaces. Cubical sets have a directed homology, consisting of preordered abelian groups where ..."
Abstract

Cited by 12 (7 self)
 Add to MetaCart
This is a brief study of the homology of cubical sets, with two main purposes. First, this combinatorial structure is viewed as representing directed spaces, breaking the intrinsic symmetries of topological spaces. Cubical sets have a directed homology, consisting of preordered abelian groups where the positive cone comes from the structural cubes. But cubical sets can also express topological facts missed by ordinary topology. This happens, for instance, in the study of group actions or foliations, where a topologicallytrivial quotient (the orbit set or the set of leaves) can be enriched with a natural cubical structure whose directed cohomology agrees with Connes ' analysis in noncommutative geometry. Thus, cubical sets can provide a sort of 'noncommutative topology', without the metric information of C*algebras.
Metric, Topology and Multicategory  A Common Approach
 J. Pure Appl. Algebra
, 2001
"... For a symmetric monoidalclosed category V and a suitable monad T on the category of sets, we introduce the notion of reflexive and transitive (T , V)algebra and show that various old and new structures are instances of such algebras. Lawvere's presentation of a metric space as a Vcategory is incl ..."
Abstract

Cited by 12 (7 self)
 Add to MetaCart
For a symmetric monoidalclosed category V and a suitable monad T on the category of sets, we introduce the notion of reflexive and transitive (T , V)algebra and show that various old and new structures are instances of such algebras. Lawvere's presentation of a metric space as a Vcategory is included in our setting, via the BettiCarboniStreetWalters interpretation of a Vcategory as a monad in the bicategory of Vmatrices, and so are Barr's presentation of topological spaces as lax algebras, Lowen's approach spaces, and Lambek's multicategories, which enjoy renewed interest in the study of ncategories. As a further example, we introduce a new structure called ultracategory which simultaneously generalizes the notions of topological space and of category.
Arrows, like monads, are monoids
 Proc. of 22nd Ann. Conf. on Mathematical Foundations of Programming Semantics, MFPS XXII, v. 158 of Electron. Notes in Theoret. Comput. Sci
, 2006
"... Monads are by now wellestablished as programming construct in functional languages. Recently, the notion of “Arrow ” was introduced by Hughes as an extension, not with one, but with two type parameters. At first, these Arrows may look somewhat arbitrary. Here we show that they are categorically fai ..."
Abstract

Cited by 12 (1 self)
 Add to MetaCart
Monads are by now wellestablished as programming construct in functional languages. Recently, the notion of “Arrow ” was introduced by Hughes as an extension, not with one, but with two type parameters. At first, these Arrows may look somewhat arbitrary. Here we show that they are categorically fairly civilised, by showing that they correspond to monoids in suitable subcategories of bifunctors C op ×C → C. This shows that, at a suitable level of abstraction, arrows are like monads — which are monoids in categories of functors C → C. Freyd categories have been introduced by Power and Robinson to model computational effects, well before Hughes ’ Arrows appeared. It is often claimed (informally) that Arrows are simply Freyd categories. We shall make this claim precise by showing how monoids in categories of bifunctors exactly correspond to Freyd categories.
Localic completion of generalized metric spaces II: Powerlocales
, 2009
"... The work investigates the powerlocales (lower, upper, Vietoris) of localic completions of generalized metric spaces. The main result is that all three are localic completions of generalized metric powerspaces, on the Kuratowski finite powerset. This is a constructive, localic version of spatial resu ..."
Abstract

Cited by 12 (3 self)
 Add to MetaCart
The work investigates the powerlocales (lower, upper, Vietoris) of localic completions of generalized metric spaces. The main result is that all three are localic completions of generalized metric powerspaces, on the Kuratowski finite powerset. This is a constructive, localic version of spatial results of Bonsangue et al. and of Edalat and Heckmann. As applications, a localic completion is always overt, and is compact iff its generalized metric space is totally bounded. The representation is used to discuss closed intervals of the reals, with the localic Heine–Borel Theorem as a consequence. The work is constructive in the toposvalid sense.
Introducing categories to the practicing physicist. In: What is Category Theory
 Advanced Studies in Mathematics and Logic 30, pp.45–74, Polimetrica Publishing
, 2006
"... We argue that category theory should become a part of the daily practice of the physicist, and more specific, the quantum physicist and/or informatician. The reason for this is not that category theory is a better way of doing mathematics, but that monoidal categories constitute the actual algebra o ..."
Abstract

Cited by 12 (7 self)
 Add to MetaCart
We argue that category theory should become a part of the daily practice of the physicist, and more specific, the quantum physicist and/or informatician. The reason for this is not that category theory is a better way of doing mathematics, but that monoidal categories constitute the actual algebra of practicing physics. We will not provide rigorous definitions or anything resembling a coherent mathematical theory, but we will take the reader for a journey introducing concepts which are part of category theory in a manner that the physicist will recognize them. 1 Why? Why would a physicist care about category theory, why would he want to know about it, why would he want to show off with it? There could be many reasons. For example, you might find John Baez’s webside one of the coolest in the world. Or you might be fascinated by Chris Isham’s and Lee Smolin’s ideas on the use of topos theory in Quantum Gravity. Also the connections between knot theory, braided categories, and sophisticated mathematical physics such as quantum groups and topological quantum field theory might lure you. Or, if you are also into pure mathematics, you might just appreciate category theory due to its incredible unifying power of mathematical structures and constructions. But there is a far more onthenose reason which is never mentioned. Namely, a category is the exact mathematical structure of practicing physics! What do I mean here by a practicing physics? Consider a physical system of type A (e.g. a qubit, or two qubits, or an electron, or classical measurement data) and perform an operation f on it (e.g. perform a measurement on it) which results in a system possibly of a different type B (e.g. the system together with classical data which encodes the measurement outcome, or, just classical data in the case that the measurement destroyed the system). So typically we have