Results 1  10
of
242
Wrappers for Feature Subset Selection
 AIJ SPECIAL ISSUE ON RELEVANCE
, 1997
"... In the feature subset selection problem, a learning algorithm is faced with the problem of selecting a relevant subset of features upon which to focus its attention, while ignoring the rest. To achieve the best possible performance with a particular learning algorithm on a particular training set, a ..."
Abstract

Cited by 1133 (3 self)
 Add to MetaCart
In the feature subset selection problem, a learning algorithm is faced with the problem of selecting a relevant subset of features upon which to focus its attention, while ignoring the rest. To achieve the best possible performance with a particular learning algorithm on a particular training set, a feature subset selection method should consider how the algorithm and the training set interact. We explore the relation between optimal feature subset selection and relevance. Our wrapper method searches for an optimal feature subset tailored to a particular algorithm and a domain. We study the strengths and weaknesses of the wrapper approach andshow a series of improved designs. We compare the wrapper approach to induction without feature subset selection and to Relief, a filter approach to feature subset selection. Significant improvement in accuracy is achieved for some datasets for the two families of induction algorithms used: decision trees and NaiveBayes.
On the optimality of the simple Bayesian classifier under zeroone loss
 MACHINE LEARNING
, 1997
"... The simple Bayesian classifier is known to be optimal when attributes are independent given the class, but the question of whether other sufficient conditions for its optimality exist has so far not been explored. Empirical results showing that it performs surprisingly well in many domains containin ..."
Abstract

Cited by 645 (26 self)
 Add to MetaCart
The simple Bayesian classifier is known to be optimal when attributes are independent given the class, but the question of whether other sufficient conditions for its optimality exist has so far not been explored. Empirical results showing that it performs surprisingly well in many domains containing clear attribute dependences suggest that the answer to this question may be positive. This article shows that, although the Bayesian classifier’s probability estimates are only optimal under quadratic loss if the independence assumption holds, the classifier itself can be optimal under zeroone loss (misclassification rate) even when this assumption is violated by a wide margin. The region of quadraticloss optimality of the Bayesian classifier is in fact a secondorder infinitesimal fraction of the region of zeroone optimality. This implies that the Bayesian classifier has a much greater range of applicability than previously thought. For example, in this article it is shown to be optimal for learning conjunctions and disjunctions, even though they violate the independence assumption. Further, studies in artificial domains show that it will often outperform more powerful classifiers for common training set sizes and numbers of attributes, even if its bias is a priori much less appropriate to the domain. This article’s results also imply that detecting attribute dependence is not necessarily the best way to extend the Bayesian classifier, and this is also verified empirically.
Bayesian Network Classifiers
, 1997
"... Recent work in supervised learning has shown that a surprisingly simple Bayesian classifier with strong assumptions of independence among features, called naive Bayes, is competitive with stateoftheart classifiers such as C4.5. This fact raises the question of whether a classifier with less restr ..."
Abstract

Cited by 638 (23 self)
 Add to MetaCart
(Show Context)
Recent work in supervised learning has shown that a surprisingly simple Bayesian classifier with strong assumptions of independence among features, called naive Bayes, is competitive with stateoftheart classifiers such as C4.5. This fact raises the question of whether a classifier with less restrictive assumptions can perform even better. In this paper we evaluate approaches for inducing classifiers from data, based on the theory of learning Bayesian networks. These networks are factored representations of probability distributions that generalize the naive Bayesian classifier and explicitly represent statements about independence. Among these approaches we single out a method we call Tree Augmented Naive Bayes (TAN), which outperforms naive Bayes, yet at the same time maintains the computational simplicity (no search involved) and robustness that characterize naive Bayes. We experimentally tested these approaches, using problems from the University of California at Irvine repository, and compared them to C4.5, naive Bayes, and wrapper methods for feature selection.
Selection of relevant features and examples in machine learning
 ARTIFICIAL INTELLIGENCE
, 1997
"... In this survey, we review work in machine learning on methods for handling data sets containing large amounts of irrelevant information. We focus on two key issues: the problem of selecting relevant features, and the problem of selecting relevant examples. We describe the advances that have been mad ..."
Abstract

Cited by 466 (1 self)
 Add to MetaCart
In this survey, we review work in machine learning on methods for handling data sets containing large amounts of irrelevant information. We focus on two key issues: the problem of selecting relevant features, and the problem of selecting relevant examples. We describe the advances that have been made on these topics in both empirical and theoretical work in machine learning, and we present a general framework that we use to compare different methods. We close with some challenges for future work in this area.
Toward optimal feature selection
 In 13th International Conference on Machine Learning
, 1995
"... In this paper, we examine a method for feature subset selection based on Information Theory. Initially, a framework for de ning the theoretically optimal, but computationally intractable, method for feature subset selection is presented. We show that our goal should be to eliminate a feature if it g ..."
Abstract

Cited by 387 (9 self)
 Add to MetaCart
(Show Context)
In this paper, we examine a method for feature subset selection based on Information Theory. Initially, a framework for de ning the theoretically optimal, but computationally intractable, method for feature subset selection is presented. We show that our goal should be to eliminate a feature if it gives us little or no additional information beyond that subsumed by the remaining features. In particular, this will be the case for both irrelevant and redundant features. We then give an e cient algorithm for feature selection which computes an approximation to the optimal feature selection criterion. The conditions under which the approximate algorithm is successful are examined. Empirical results are given on a number of data sets, showing that the algorithm e ectively handles datasets with a very large number of features.
Estimating Continuous Distributions in Bayesian Classifiers
 In Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence
, 1995
"... When modeling a probability distribution with a Bayesian network, we are faced with the problem of how to handle continuous variables. Most previous work has either solved the problem by discretizing, or assumed that the data are generated by a single Gaussian. In this paper we abandon the normality ..."
Abstract

Cited by 343 (2 self)
 Add to MetaCart
When modeling a probability distribution with a Bayesian network, we are faced with the problem of how to handle continuous variables. Most previous work has either solved the problem by discretizing, or assumed that the data are generated by a single Gaussian. In this paper we abandon the normality assumption and instead use statistical methods for nonparametric density estimation. For a naive Bayesian classifier, we present experimental results on a variety of natural and artificial domains, comparing two methods of density estimation: assuming normality and modeling each conditional distribution with a single Gaussian; and using nonparametric kernel density estimation. We observe large reductions in error on several natural and artificial data sets, which suggests that kernel estimation is a useful tool for learning Bayesian models. In Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann Publishers, San Mateo, 1995 1 Introduction In rec...
Beyond Independence: Conditions for the Optimality of the Simple Bayesian Classifier
"... The simple Bayesian classifier (SBC) is commonly thought to assume that attributes are independent given the class, but this is apparently contradicted by the surprisingly good performance it exhibits in many domains that contain clear attribute dependences. No explanation for this has been proposed ..."
Abstract

Cited by 313 (8 self)
 Add to MetaCart
The simple Bayesian classifier (SBC) is commonly thought to assume that attributes are independent given the class, but this is apparently contradicted by the surprisingly good performance it exhibits in many domains that contain clear attribute dependences. No explanation for this has been proposed so far. In this paper we show that the SBC does not in fact assume attribute independence, and can be optimal even when this assumption is violated by a wide margin. The key to this finding lies in the distinction between classification and probability estimation: correct classification can be achieved even when the probability estimates used contain large errors. We show that the previouslyassumed region of optimality of the SBC is a secondorder infinitesimal fraction of the actual one. This is followed by the derivation of several necessary and several sufficient conditions for the optimality of the SBC. For example, the SBC is optimal for learning arbitrary conjunctions and disjunctions, even though they violate the independence assumption. The paper also reports empirical evidence of the SBC's competitive performance in domains containing substantial degrees of attribute dependence.
Predicting Human Interruptibility with Sensors: A Wizard of Oz Feasibility Study
 CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS
, 2003
"... A person seeking someone else's attention is normally able to quickly assess how interruptible they are. This assessment allows for behavior we perceive as natural, socially appropriate, or simply polite. On the other hand, today's computer systems are almost entirely oblivious to the huma ..."
Abstract

Cited by 227 (26 self)
 Add to MetaCart
(Show Context)
A person seeking someone else's attention is normally able to quickly assess how interruptible they are. This assessment allows for behavior we perceive as natural, socially appropriate, or simply polite. On the other hand, today's computer systems are almost entirely oblivious to the human world they operate in, and typically have no way to take into account the interruptibility of the user. This paper presents a Wizard of Oz study exploring whether, and how, robust sensorbased predictions of interruptibility might be constructed, which sensors might be most useful to such predictions, and how simple such sensors might be. The study simulates a range of possible sensors through human coding of audio and video recordings. Experience sampling is used to simultaneously collect randomly distributed selfreports of interruptibility. Based on these simulated sensors, we construct statistical models predicting human interruptibility and compare their predictions with the collected selfreport data. The results of these models, although covering a demographically limited sample, are very promising, with the overall accuracy of several models reaching about 78%. Additionally, a model tuned to avoiding unwanted interruptions does so for 90% of its predictions, while retaining 75% overall accuracy.
Correlationbased feature selection for machine learning
, 1998
"... A central problem in machine learning is identifying a representative set of features from which to construct a classification model for a particular task. This thesis addresses the problem of feature selection for machine learning through a correlation based approach. The central hypothesis is that ..."
Abstract

Cited by 172 (3 self)
 Add to MetaCart
(Show Context)
A central problem in machine learning is identifying a representative set of features from which to construct a classification model for a particular task. This thesis addresses the problem of feature selection for machine learning through a correlation based approach. The central hypothesis is that good feature sets contain features that are highly correlated with the class, yet uncorrelated with each other. A feature evaluation formula, based on ideas from test theory, provides an operational definition of this hypothesis. CFS (Correlation based Feature Selection) is an algorithm that couples this evaluation formula with an appropriate correlation measure and a heuristic search strategy. CFS was evaluated by experiments on artificial and natural datasets. Three machine learning algorithms were used: C4.5 (a decision tree learner), IB1 (an instance based learner), and naive Bayes. Experiments on artificial datasets showed that CFS quickly identifies and screens irrelevant, redundant, and noisy features, and identifies relevant features as long as their relevance does not strongly depend on other features. On natural domains, CFS typically eliminated well over half the features. In most cases, classification accuracy using the reduced feature set equaled or bettered accuracy using the complete feature set.
The Power of Decision Tables
 Proceedings of the European Conference on Machine Learning
, 1995
"... . We evaluate the power of decision tables as a hypothesis space for supervised learning algorithms. Decision tables are one of the simplest hypothesis spaces possible, and usually they are easy to understand. Experimental results show that on artificial and realworld domains containing only discre ..."
Abstract

Cited by 114 (5 self)
 Add to MetaCart
. We evaluate the power of decision tables as a hypothesis space for supervised learning algorithms. Decision tables are one of the simplest hypothesis spaces possible, and usually they are easy to understand. Experimental results show that on artificial and realworld domains containing only discrete features, IDTM, an algorithm inducing decision tables, can sometimes outperform stateoftheart algorithms such as C4.5. Surprisingly, performance is quite good on some datasets with continuous features, indicating that many datasets used in machine learning either do not require these features, or that these features have few values. We also describe an incremental method for performing crossvalidation that is applicable to incremental learning algorithms including IDTM. Using incremental crossvalidation, it is possible to crossvalidate a given dataset and IDTM in time that is linear in the number of instances, the number of features, and the number of label values. The time for incre...