Results 1  10
of
62
Determinants of longterm growth: a Bayesian Averaging of Classical Estimates (BACE) approach
 American Economic Review
"... This paper examines the robustness of explanatory variables in crosscountry economic growth regressions. It introduces and employs a novel approach, Bayesian Averaging of Classical Estimates (BACE), which constructs estimates by averaging OLS coefficients across models. The weights given to indiv ..."
Abstract

Cited by 360 (2 self)
 Add to MetaCart
This paper examines the robustness of explanatory variables in crosscountry economic growth regressions. It introduces and employs a novel approach, Bayesian Averaging of Classical Estimates (BACE), which constructs estimates by averaging OLS coefficients across models. The weights given to individual regressions have a Bayesian justification similar to the Schwarz model selection criterion. Of 67 explanatory variables we find 18 to be significantly and robustly partially correlated with longterm growth and another three variables to be marginally related. The strongest evidence is for the relative price of investment, primary school enrollment, and the initial level of real GDP per capita. (JEL O51, O52,
Approaches for Bayesian variable selection
 Statistica Sinica
, 1997
"... Abstract: This paper describes and compares various hierarchical mixture prior formulations of variable selection uncertainty in normal linear regression models. These include the nonconjugate SSVS formulation of George and McCulloch (1993), as well as conjugate formulations which allow for analytic ..."
Abstract

Cited by 227 (6 self)
 Add to MetaCart
Abstract: This paper describes and compares various hierarchical mixture prior formulations of variable selection uncertainty in normal linear regression models. These include the nonconjugate SSVS formulation of George and McCulloch (1993), as well as conjugate formulations which allow for analytical simplification. Hyperparameter settings which base selection on practical significance, and the implications of using mixtures with point priors are discussed. Computational methods for posterior evaluation and exploration are considered. Rapid updating methods are seen to provide feasible methods for exhaustive evaluation using Gray Code sequencing in moderately sized problems, and fast Markov Chain Monte Carlo exploration in large problems. Estimation of normalization constants is seen to provide improved posterior estimates of individual model probabilities and the total visited probability. Various procedures are illustrated on simulated sample problems and on a real problem concerning the construction of financial index tracking portfolios.
Model Selection and the Principle of Minimum Description Length
 Journal of the American Statistical Association
, 1998
"... This paper reviews the principle of Minimum Description Length (MDL) for problems of model selection. By viewing statistical modeling as a means of generating descriptions of observed data, the MDL framework discriminates between competing models based on the complexity of each description. This ..."
Abstract

Cited by 195 (8 self)
 Add to MetaCart
This paper reviews the principle of Minimum Description Length (MDL) for problems of model selection. By viewing statistical modeling as a means of generating descriptions of observed data, the MDL framework discriminates between competing models based on the complexity of each description. This approach began with Kolmogorov's theory of algorithmic complexity, matured in the literature on information theory, and has recently received renewed interest within the statistics community. In the pages that follow, we review both the practical as well as the theoretical aspects of MDL as a tool for model selection, emphasizing the rich connections between information theory and statistics. At the boundary between these two disciplines, we find many interesting interpretations of popular frequentist and Bayesian procedures. As we will see, MDL provides an objective umbrella under which rather disparate approaches to statistical modeling can coexist and be compared. We illustrate th...
Calibration and Empirical Bayes Variable Selection
 Biometrika
, 1997
"... this paper, is that with F =2logp. This choice was proposed by Foster &G eorge (1994) where it was called the Risk Inflation Criterion (RIC) because it asymptotically minimises the maximum predictive risk inflation due to selection when X is orthogonal. This choice and its minimax property were ..."
Abstract

Cited by 191 (21 self)
 Add to MetaCart
this paper, is that with F =2logp. This choice was proposed by Foster &G eorge (1994) where it was called the Risk Inflation Criterion (RIC) because it asymptotically minimises the maximum predictive risk inflation due to selection when X is orthogonal. This choice and its minimax property were also discovered independently by Donoho & Johnstone (1994) in the wavelet regression context, where they refer to it as the universal hard thresholding rule
Benchmark Priors for Bayesian Model Averaging
 FORTHCOMING IN THE JOURNAL OF ECONOMETRICS
, 2001
"... In contrast to a posterior analysis given a particular sampling model, posterior model probabilities in the context of model uncertainty are typically rather sensitive to the specification of the prior. In particular, “diffuse” priors on modelspecific parameters can lead to quite unexpected consequ ..."
Abstract

Cited by 171 (5 self)
 Add to MetaCart
In contrast to a posterior analysis given a particular sampling model, posterior model probabilities in the context of model uncertainty are typically rather sensitive to the specification of the prior. In particular, “diffuse” priors on modelspecific parameters can lead to quite unexpected consequences. Here we focus on the practically relevant situation where we need to entertain a (large) number of sampling models and we have (or wish to use) little or no subjective prior information. We aim at providing an “automatic” or “benchmark” prior structure that can be used in such cases. We focus on the Normal linear regression model with uncertainty in the choice of regressors. We propose a partly noninformative prior structure related to a Natural Conjugate gprior specification, where the amount of subjective information requested from the user is limited to the choice of a single scalar hyperparameter g0j. The consequences of different choices for g0j are examined. We investigate theoretical properties, such as consistency of the implied Bayesian procedure. Links with classical information criteria are provided. More importantly, we examine the finite sample implications of several choices of g0j in a simulation study. The use of the MC3 algorithm of Madigan and York (1995), combined with efficient coding in Fortran, makes it feasible to conduct large simulations. In addition to posterior criteria, we shall also compare the predictive performance of different priors. A classic example concerning the economics of crime will also be provided and contrasted with results in the literature. The main findings of the paper will lead us to propose a “benchmark” prior specification in a linear regression context with model uncertainty.
Model Uncertainty in CrossCountry Growth Regressions
 Journal of Applied Econometrics
, 2001
"... We investigate the issue of model uncertainty in crosscountry growth regressions using Bayesian Model Averaging (BMA). We find that the posterior probability is spread widely among many models, suggesting the superiority of BMA over choosing any single model. Outofsample predictive results suppor ..."
Abstract

Cited by 141 (4 self)
 Add to MetaCart
We investigate the issue of model uncertainty in crosscountry growth regressions using Bayesian Model Averaging (BMA). We find that the posterior probability is spread widely among many models, suggesting the superiority of BMA over choosing any single model. Outofsample predictive results support this claim. In contrast to Levine and Renelt (1992), our results broadly support the more ‘optimistic ’ conclusion of SalaiMartin (1997b), namely that some variables are important regressors for explaining crosscountry growth patterns. However, care should be taken in the methodology employed. The approach proposed here is firmly grounded in statistical theory and immediately leads to posterior and predictive inference. Copyright © 2001 John Wiley & Sons, Ltd. 1.
Multiple Shrinkage and Subset Selection in Wavelets
, 1997
"... This paper discusses Bayesian methods for multiple shrinkage estimation in wavelets. Wavelets are used in applications for data denoising, via shrinkage of the coefficients towards zero, and for data compression, by shrinkage and setting small coefficients to zero. We approach wavelet shrinkage by u ..."
Abstract

Cited by 140 (16 self)
 Add to MetaCart
This paper discusses Bayesian methods for multiple shrinkage estimation in wavelets. Wavelets are used in applications for data denoising, via shrinkage of the coefficients towards zero, and for data compression, by shrinkage and setting small coefficients to zero. We approach wavelet shrinkage by using Bayesian hierarchical models, assigning a positive prior probability to the wavelet coefficients being zero. The resulting estimator for the wavelet coefficients is a multiple shrinkage estimator that exhibits a wide variety of nonlinear shrinkage patterns. We discuss fast computational implementations, with a focus on easytocompute analytic approximations as well as importance sampling and Markov chain Monte Carlo methods. Multiple shrinkage estimators prove to have excellent mean squared error performance in reconstructing standard test functions. We demonstrate this in simulated test examples, comparing various implementations of multiple shrinkage to commonly used shrinkage rules. Finally, we illustrate our approach with an application to the socalled "glint" data.
The practical implementation of Bayesian model selection
 Institute of Mathematical Statistics
, 2001
"... In principle, the Bayesian approach to model selection is straightforward. Prior probability distributions are used to describe the uncertainty surrounding all unknowns. After observing the data, the posterior distribution provides a coherent post data summary of the remaining uncertainty which is r ..."
Abstract

Cited by 128 (3 self)
 Add to MetaCart
In principle, the Bayesian approach to model selection is straightforward. Prior probability distributions are used to describe the uncertainty surrounding all unknowns. After observing the data, the posterior distribution provides a coherent post data summary of the remaining uncertainty which is relevant for model selection. However, the practical implementation of this approach often requires carefully tailored priors and novel posterior calculation methods. In this article, we illustrate some of the fundamental practical issues that arise for two different model selection problems: the variable selection problem for the linear model and the CART model selection problem.
Spike and slab variable selection: frequentist and bayesian strategies
 The Annals of Statistics
"... Variable selection in the linear regression model takes many apparent faces from both frequentist and Bayesian standpoints. In this paper we introduce a variable selection method referred to as a rescaled spike and slab model. We study the importance of prior hierarchical specifications and draw con ..."
Abstract

Cited by 93 (7 self)
 Add to MetaCart
Variable selection in the linear regression model takes many apparent faces from both frequentist and Bayesian standpoints. In this paper we introduce a variable selection method referred to as a rescaled spike and slab model. We study the importance of prior hierarchical specifications and draw connections to frequentist generalized ridge regression estimation. Specifically, we study the usefulness of continuous bimodal priors to model hypervariance parameters, and the effect scaling has on the posterior mean through its relationship to penalization. Several model selection strategies, some frequentist and some Bayesian in nature, are developed and studied theoretically. We demonstrate the importance of selective shrinkage for effective variable selection in terms of risk misclassification, and show this is achieved using the posterior from a rescaled spike and slab model. We also show how to verify a procedure’s ability to reduce model uncertainty in finite samples using a specialized forward selection strategy. Using this tool, we illustrate the effectiveness of rescaled spike and slab models in reducing model uncertainty. 1. Introduction. We
Optimal Predictive Model Selection
 Ann. Statist
, 2002
"... Often the goal of model selection is to choose a model for future prediction, and it is natural to measure the accuracy of a future prediction by squared error loss. ..."
Abstract

Cited by 92 (3 self)
 Add to MetaCart
Often the goal of model selection is to choose a model for future prediction, and it is natural to measure the accuracy of a future prediction by squared error loss.