Results 1  10
of
59
Monotone Complexity
, 1990
"... We give a general complexity classification scheme for monotone computation, including monotone spacebounded and Turing machine models not previously considered. We propose monotone complexity classes including mAC i , mNC i , mLOGCFL, mBWBP , mL, mNL, mP , mBPP and mNP . We define a simple ..."
Abstract

Cited by 2352 (12 self)
 Add to MetaCart
We give a general complexity classification scheme for monotone computation, including monotone spacebounded and Turing machine models not previously considered. We propose monotone complexity classes including mAC i , mNC i , mLOGCFL, mBWBP , mL, mNL, mP , mBPP and mNP . We define a simple notion of monotone reducibility and exhibit complete problems. This provides a framework for stating existing results and asking new questions. We show that mNL (monotone nondeterministic logspace) is not closed under complementation, in contrast to Immerman's and Szelepcs 'enyi's nonmonotone result [Imm88, Sze87] that NL = coNL; this is a simple extension of the monotone circuit depth lower bound of Karchmer and Wigderson [KW90] for stconnectivity. We also consider mBWBP (monotone bounded width branching programs) and study the question of whether mBWBP is properly contained in mNC 1 , motivated by Barrington's result [Bar89] that BWBP = NC 1 . Although we cannot answer t...
On the power of smalldepth threshold circuits
 Proceedings 31st Annual IEEE Symposium on Foundations of Computer Science
, 1990
"... Abstract. Weinvestigate the power of threshold circuits of small depth. In particular, we give functions that require exponential size unweighted threshold circuits of depth 3 when we restrict the bottom fanin. We also prove that there are monotone functions fk that can be computed in depth k and li ..."
Abstract

Cited by 105 (2 self)
 Add to MetaCart
Abstract. Weinvestigate the power of threshold circuits of small depth. In particular, we give functions that require exponential size unweighted threshold circuits of depth 3 when we restrict the bottom fanin. We also prove that there are monotone functions fk that can be computed in depth k and linear size ^ � _circuits but require exponential size to compute by a depth k; 1 monotone weighted threshold circuit. Key words. Circuit complexity, monotone circuits, threshold circuits, lower bounds Subject classi cations. 68Q15, 68Q99 1.
Private vs. Common Random bits in Communication Complexity
 Information Processing Letters
, 1995
"... We investigate the relative power of the common random string model vs. the private random string model in communication complexity. We show that the two model are essentially equal. Keywords: communication complexity, randomness, theory of computation. Communication complexity is a model of comp ..."
Abstract

Cited by 89 (0 self)
 Add to MetaCart
We investigate the relative power of the common random string model vs. the private random string model in communication complexity. We show that the two model are essentially equal. Keywords: communication complexity, randomness, theory of computation. Communication complexity is a model of computation where two parties, each with an input, want to mutually compute a Boolean function that is defined on pairs of inputs. Formally, let f : X \Theta Y 7! f0; 1g be a Boolean function. The communication problem for f is the following twoplayer game. Player A gets x 2 X and player B gets y 2 Y . Their goal is to compute f(x; y). They have unlimited computational power and a full description of f , but they don't know each other's input. They determine the output value by exchanging messages. Let n, the length of the input, be log(jXjjY j). A protocol for computing f is a pair of algorithms (one for each player) according to which the players send binary messages. A protocol proceeds in ...
Lower Bounds for Cutting Planes Proofs with Small Coefficients
, 1995
"... We consider smallweight Cutting Planes (CP ) proofs; that is, Cutting Planes (CP ) proofs with coefficients up to P oly(n). We use the well known lower bounds for monotone complexity to prove an exponential lower bound for the length of CP proofs, for a family of tautologies based on the cl ..."
Abstract

Cited by 75 (19 self)
 Add to MetaCart
We consider smallweight Cutting Planes (CP ) proofs; that is, Cutting Planes (CP ) proofs with coefficients up to P oly(n). We use the well known lower bounds for monotone complexity to prove an exponential lower bound for the length of CP proofs, for a family of tautologies based on the clique function. Because Resolution is a special case of smallweight CP , our method also gives a new and simpler exponential lower bound for Resolution. We also prove the following two theorems : (1) Treelike CP proofs cannot polynomially simulate nontreelike CP proofs. (2) Treelike CP proofs and BoundeddepthFrege proofs cannot polynomially simulate each other. Our proofs also work for some generalizations of the CP proof system. In particular, they work for CP with a deduction rule, and also for proof systems that allow any formula with small communication complexity, and any set of sound rules of inference. 1 Introduction One of the most fundamental questions in pro...
Unprovability of Lower Bounds on the Circuit Size in Certain Fragments of Bounded Arithmetic
 in Izvestiya of the Russian Academy of Science, mathematics
, 1995
"... To appear in Izvestiya of the RAN We show that if strong pseudorandom generators exist then the statement “α encodes a circuit of size n (log ∗ n) for SATISFIABILITY ” is not refutable in S2 2 (α). For refutation in S1 2 (α), this is proven under the weaker assumption of the existence of generators ..."
Abstract

Cited by 56 (6 self)
 Add to MetaCart
To appear in Izvestiya of the RAN We show that if strong pseudorandom generators exist then the statement “α encodes a circuit of size n (log ∗ n) for SATISFIABILITY ” is not refutable in S2 2 (α). For refutation in S1 2 (α), this is proven under the weaker assumption of the existence of generators secure against the attack by small depth circuits, and for another system which is strong enough to prove exponential lower bounds for constantdepth circuits, this is shown without using any unproven hardness assumptions. These results can be also viewed as direct corollaries of interpolationlike theorems for certain “split versions ” of classical systems of Bounded Arithmetic introduced in this paper.
The History and Status of the P versus NP Question
, 1992
"... this article, I have attempted to organize and describe this literature, including an occasional opinion about the most fruitful directions, but no technical details. In the first half of this century, work on the power of formal systems led to the formalization of the notion of algorithm and the re ..."
Abstract

Cited by 51 (0 self)
 Add to MetaCart
this article, I have attempted to organize and describe this literature, including an occasional opinion about the most fruitful directions, but no technical details. In the first half of this century, work on the power of formal systems led to the formalization of the notion of algorithm and the realization that certain problems are algorithmically unsolvable. At around this time, forerunners of the programmable computing machine were beginning to appear. As mathematicians contemplated the practical capabilities and limitations of such devices, computational complexity theory emerged from the theory of algorithmic unsolvability. Early on, a particular type of computational task became evident, where one is seeking an object which lies
Bounded Arithmetic and Lower Bounds in Boolean Complexity
 Feasible Mathematics II
, 1993
"... We study the question of provability of lower bounds on the complexity of explicitly given Boolean functions in weak fragments of Peano Arithmetic. To that end, we analyze what is the right fragment capturing the kind of techniques existing in Boolean complexity at present. We give both formal and i ..."
Abstract

Cited by 49 (5 self)
 Add to MetaCart
We study the question of provability of lower bounds on the complexity of explicitly given Boolean functions in weak fragments of Peano Arithmetic. To that end, we analyze what is the right fragment capturing the kind of techniques existing in Boolean complexity at present. We give both formal and informal arguments supporting the claim that a conceivable answer is V 1 (which, in view of RSUV isomorphism, is equivalent to S 2 ), although some major results about the complexity of Boolean functions can be proved in (presumably) weaker subsystems like U 1 . As a byproduct of this analysis, we give a more constructive version of the proof of Hastad Switching Lemma which probably is interesting in its own right.
Superpolynomial lower bounds for monotone span programs
, 1996
"... In this paper we obtain the first superpolynomial lower bounds for monotone span programs computing explicit functions. The best previous lower bound was Ω(n 5/2) by Beimel, Gál, Paterson [BGP]; our proof exploits a general combinatorial lower bound criterion from that paper. Our lower bounds are ba ..."
Abstract

Cited by 44 (6 self)
 Add to MetaCart
In this paper we obtain the first superpolynomial lower bounds for monotone span programs computing explicit functions. The best previous lower bound was Ω(n 5/2) by Beimel, Gál, Paterson [BGP]; our proof exploits a general combinatorial lower bound criterion from that paper. Our lower bounds are based on an analysis of Paleytype bipartite graphs via Weil’s character sum estimates. We prove an n Ω(log n / log log n) lower bound for the size of monotone span programs for the clique problem. Our results give the first superpolynomial lower bounds for linear secret sharing schemes. We demonstrate the surprising power of monotone span programs by exhibiting a function computable in this model in linear size while requiring superpolynomial size monotone circuits and exponential size monotone formulae. We also show that the perfect matching function can be computed by polynomial size (nonmonotone) span programs over arbitrary fields.
Upper and Lower Bounds for Treelike Cutting Planes Proofs
 In 9th IEEE Symposium on Logic in Computer Science
, 1994
"... In this paper we study the complexity of Cutting Planes (CP) refutations, and treelike CP refutations. Treelike CP proofs are natural and still quite powerful. In particular, the propositional pigeonhole principle (PHP) has been shown to have polynomialsized treelike CP proofs. Our main result s ..."
Abstract

Cited by 41 (10 self)
 Add to MetaCart
In this paper we study the complexity of Cutting Planes (CP) refutations, and treelike CP refutations. Treelike CP proofs are natural and still quite powerful. In particular, the propositional pigeonhole principle (PHP) has been shown to have polynomialsized treelike CP proofs. Our main result shows that a family of tautologies, introduced in this paper requires exponentialsized treelike CP proofs. We obtain this result by introducing a new method which relates the size of a CP refutation to the communication complexity of a related search problem. Because these tautologies have polynomialsized Frege proofs, it follows that treelike CP cannot polynomially simulate Frege systems. 1 Introduction An important open problem is to determine whether there exists a propositional proof system that admits short (polynomial size) proofs for all tautologies, or equivalently, whether or not NP equals coNP. In order to attack Research supported by NSF NYI grant CCR92570979 y Research su...