Results 1 
7 of
7
What is a Categorical Model of the Differential and the Resource λCalculi?
"... The differential λcalculus is a paradigmatic functional programming language endowed with a syntactical differentiation operator that allows to apply a program to an argument in a linear way. One of the main features of this language is that it is resource conscious and gives the programmer suitab ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
The differential λcalculus is a paradigmatic functional programming language endowed with a syntactical differentiation operator that allows to apply a program to an argument in a linear way. One of the main features of this language is that it is resource conscious and gives the programmer suitable primitives to handle explicitly the resources used by a program during its execution. The differential operator also allows to write the full Taylor expansion of a program. Through this expansion every program can be decomposed into an infinite sum (representing nondeterministic choice) of ‘simpler’ programs that are strictly linear. The aim of this paper is to develop an abstract ‘model theory ’ for the untyped differential λcalculus. In particular, we investigate what should be a general categorical definition of denotational model for this calculus. Starting from the work of Blute, Cockett and Seely on differential categories we provide the notion of Cartesian closed differential category and we prove that linear reflexive objects living in such categories constitute sound models of the untyped differential λcalculus. We also give sufficient conditions for Cartesian closed differential categories to model the Taylor expansion. This entails that every model living in such categories equates all programs having the same full Taylor expansion. We then
Constructing differential categories and deconstructing categories of games
 In Luca Aceto, Monika Henzinger, and Jiri Sgall, editors, ICALP (2), volume 6756 of Lecture Notes in Computer Science
, 2011
"... Abstract. We present an abstract construction for building differential categories useful to model resource sensitive calculi, and we apply it to categories of games. In one instance, we recover a category previously used to give a fully abstract model of a nondeterministic imperative language. The ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
Abstract. We present an abstract construction for building differential categories useful to model resource sensitive calculi, and we apply it to categories of games. In one instance, we recover a category previously used to give a fully abstract model of a nondeterministic imperative language. The construction exposes the differential structure already present in this model. A second instance corresponds to a new Cartesian differential category of games. We give a model of a Resource PCF in this category and show that it enjoys the finite definability property. Comparison with a relational semantics reveals that the latter also possesses this property and is fully abstract. 1
Complexity of strongly normalising λterms via nonidempotent intersection types
"... We present a typing system for the λcalculus, with nonidempotent intersection types. As it is the case in (some) systems with idempotent intersections, a λterm is typable if and only if it is strongly normalising. Nonidempotency brings some further information into typing trees, such as a bound o ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
We present a typing system for the λcalculus, with nonidempotent intersection types. As it is the case in (some) systems with idempotent intersections, a λterm is typable if and only if it is strongly normalising. Nonidempotency brings some further information into typing trees, such as a bound on the longest βreduction sequence reducing a term to its normal form. We actually present these results in Klop’s extension of λcalculus, where the bound that is read in the typing tree of a term is refined into an exact measure of the longest reduction sequence. This complexity result is, for longest reduction sequences, the counterpart of de Carvalho’s result for linear headreduction sequences.
Resource combinatory algebras
"... Abstract. We initiate a purely algebraic study of Ehrhard and Regnier’s resource λcalculus, by introducing three equational classes of algebras: resource combinatory algebras, resource lambdaalgebras and resource lambdaabstraction algebras. We establish the relations between them, laying down fou ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
Abstract. We initiate a purely algebraic study of Ehrhard and Regnier’s resource λcalculus, by introducing three equational classes of algebras: resource combinatory algebras, resource lambdaalgebras and resource lambdaabstraction algebras. We establish the relations between them, laying down foundations for a model theory of resource λcalculus. We also show that the ideal completion of a resource combinatory (resp. lambda, lambdaabstraction) algebra induces a “classical ” combinatory (resp. lambda, lambdaabstraction) algebra, and that any model of the classical λcalculus raising from a resource lambdaalgebra determines a λtheory which equates all terms having the same Böhm tree. 1
DIFFERENTIAL RESTRICTION CATEGORIES
"... Abstract. We combine two recent ideas: cartesian differential categories, and restriction categories. The result is a new structure which axiomatizes the category of smooth maps defined on open subsets of Rn in a way that is completely algebraic. We also give other models for the resulting structure ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
Abstract. We combine two recent ideas: cartesian differential categories, and restriction categories. The result is a new structure which axiomatizes the category of smooth maps defined on open subsets of Rn in a way that is completely algebraic. We also give other models for the resulting structure, discuss what it means for a partial map to be additive or linear, and show that differential restriction structure can be lifted through various completion operations.
What is a differential partial combinatory algebra?
, 2011
"... In this thesis we combine Turing categories with Cartesian left additive restriction categories and again with differential restriction categories. The result of the first combination is a new structure which models nondeterministic computation. The result of the second combination is a structure wh ..."
Abstract
 Add to MetaCart
In this thesis we combine Turing categories with Cartesian left additive restriction categories and again with differential restriction categories. The result of the first combination is a new structure which models nondeterministic computation. The result of the second combination is a structure which models the notion of linear resource consumption. We also study the structural background required to understand what new features Turing structure should have in light of addition and differentiation – most crucial to this development is the way in which idempotents split. For the combination of Turing categories with Cartesian left additive restriction categories we will also provide a model.