Results 11  20
of
1,963
A measure of betweenness centrality based on random walks
 Social Networks
, 2005
"... Betweenness is a measure of the centrality of a node in a network, and is normally calculated as the fraction of shortest paths between node pairs that pass through the node of interest. Betweenness is, in some sense, a measure of the influence a node has over the spread of information through the n ..."
Abstract

Cited by 280 (0 self)
 Add to MetaCart
(Show Context)
Betweenness is a measure of the centrality of a node in a network, and is normally calculated as the fraction of shortest paths between node pairs that pass through the node of interest. Betweenness is, in some sense, a measure of the influence a node has over the spread of information through the network. By counting only shortest paths, however, the conventional definition implicitly assumes that information spreads only along those shortest paths. Here we propose a betweenness measure that relaxes this assumption, including contributions from essentially all paths between nodes, not just the shortest, although it still gives more weight to short paths. The measure is based on random walks, counting how often a node is traversed by a random walk between two other nodes. We show how our measure can be calculated using matrix methods, and give some examples of its application to particular networks. 1
Selfish Routing and the Price of Anarchy
 MATHEMATICAL PROGRAMMING SOCIETY NEWSLETTER
, 2007
"... Selfish routing is a classical mathematical model of how selfinterested users might route traffic through a congested network. The outcome of selfish routing is generally inefficient, in that it fails to optimize natural objective functions. The price of anarchy is a quantitative measure of this in ..."
Abstract

Cited by 252 (11 self)
 Add to MetaCart
(Show Context)
Selfish routing is a classical mathematical model of how selfinterested users might route traffic through a congested network. The outcome of selfish routing is generally inefficient, in that it fails to optimize natural objective functions. The price of anarchy is a quantitative measure of this inefficiency. We survey recent work that analyzes the price of anarchy of selfish routing. We also describe related results on bounding the worstpossible severity of a phenomenon called Braess’s Paradox, and on three techniques for reducing the price of anarchy of selfish routing. This survey concentrates on the contributions of the author’s PhD thesis, but also discusses several more recent results in the area.
Coauthorship networks and patterns of scientific collaboration
 In Proceedings of the National Academy of Sciences
, 2004
"... Using data from three bibliographic databases in biology, physics, and mathematics respectively, networks are constructed in which the nodes are scientists and two scientists are connected if they have coauthored a paper together. We use these networks to answer a broad variety of questions about co ..."
Abstract

Cited by 217 (0 self)
 Add to MetaCart
(Show Context)
Using data from three bibliographic databases in biology, physics, and mathematics respectively, networks are constructed in which the nodes are scientists and two scientists are connected if they have coauthored a paper together. We use these networks to answer a broad variety of questions about collaboration patterns, such as the numbers of papers authors write, how many people they write them with, what the typical distance between scientists is through the network, and how patterns of collaboration vary between subjects and over time. We also summarize a number of recent results by other authors on coauthorship patterns. 1
Bounding the Lifetime of Sensor Networks Via Optimal Role Assignments
, 2002
"... A key challenge in adhoc, datagathering wireless sensor networks is achieving a lifetime of several years using nodes that carry merely hundreds of joules of stored energy. In this paper, we explore the fundamental limits of energyefficient collaborative datagathering by deriving upper bounds on ..."
Abstract

Cited by 209 (0 self)
 Add to MetaCart
A key challenge in adhoc, datagathering wireless sensor networks is achieving a lifetime of several years using nodes that carry merely hundreds of joules of stored energy. In this paper, we explore the fundamental limits of energyefficient collaborative datagathering by deriving upper bounds on the lifetime of increasingly sophisticated sensor networks.
SelfOrganization and Identification of Web Communities
 IEEE Computer
, 2002
"... Despite the decentralized and unorganized nature of the web, we show that the web selforganizes such that communities of highly related pages can be efficiently identified based purely on connectivity. ..."
Abstract

Cited by 204 (0 self)
 Add to MetaCart
Despite the decentralized and unorganized nature of the web, we show that the web selforganizes such that communities of highly related pages can be efficiently identified based purely on connectivity.
The Web as a Parallel Corpus
 Computational Linguistics
, 2003
"... Parallel corpora have become an essential resource for work in multilingual natural language processing. In this report, we describe our work using the STRAND system for mining parallel text on the World Wide Web, first reviewing the original algorithm and results and then presenting a set of signif ..."
Abstract

Cited by 199 (6 self)
 Add to MetaCart
Parallel corpora have become an essential resource for work in multilingual natural language processing. In this report, we describe our work using the STRAND system for mining parallel text on the World Wide Web, first reviewing the original algorithm and results and then presenting a set of significant enhancements. These enhancements include the use of supervised learning based on structural features of documents to improve classification performance, a new contentbased measure of translational equivalence, and adaptation of the system to take advantage of the Internet Archive for mining parallel text from the Web on a large scale.
Geometric Shortest Paths and Network Optimization
 Handbook of Computational Geometry
, 1998
"... Introduction A natural and wellstudied problem in algorithmic graph theory and network optimization is that of computing a "shortest path" between two nodes, s and t, in a graph whose edges have "weights" associated with them, and we consider the "length" of a path to ..."
Abstract

Cited by 194 (15 self)
 Add to MetaCart
(Show Context)
Introduction A natural and wellstudied problem in algorithmic graph theory and network optimization is that of computing a "shortest path" between two nodes, s and t, in a graph whose edges have "weights" associated with them, and we consider the "length" of a path to be the sum of the weights of the edges that comprise it. Efficient algorithms are well known for this problem, as briefly summarized below. The shortest path problem takes on a new dimension when considered in a geometric domain. In contrast to graphs, where the encoding of edges is explicit, a geometric instance of a shortest path problem is usually specified by giving geometric objects that implicitly encode the graph and its edge weights. Our goal in devising efficient geometric algorithms is generally to avoid explicit construction of the entire underlying graph, since the full induced graph may be very large (even exponential in the input size, or infinite). Computing an optimal
Robust discrete optimization and network flows
 Mathematical Programming Series B
, 2003
"... We propose an approach to address data uncertainty for discrete optimization and network flow problems that allows controlling the degree of conservatism of the solution, and is computationally tractable both practically and theoretically. In particular, when both the cost coefficients and the data ..."
Abstract

Cited by 191 (28 self)
 Add to MetaCart
(Show Context)
We propose an approach to address data uncertainty for discrete optimization and network flow problems that allows controlling the degree of conservatism of the solution, and is computationally tractable both practically and theoretically. In particular, when both the cost coefficients and the data in the constraints of an integer programming problem are subject to uncertainty, we propose a robust integer programming problem of moderately larger size that allows controlling the degree of conservatism of the solution in terms of probabilistic bounds on constraint violation. When only the cost coefficients are subject to uncertainty and the problem is a 0 − 1 discrete optimization problem on n variables, then we solve the robust counterpart by solving at most n+1 instances of the original problem. Thus, the robust counterpart of a polynomially solvable 0−1 discrete optimization problem remains polynomially solvable. In particular, robust matching, spanning tree, shortest path, matroid intersection, etc. are polynomially solvable. We also show that the robust counterpart of an NPhard αapproximable 0 − 1 discrete optimization problem, remains αapproximable. Finally, we propose an algorithm for robust network flows that solves the robust counterpart by solving a polynomial number of nominal minimum cost flow problems in a modified network.
Models of Translational Equivalence among Words
 Computational Linguistics
, 2000
"... This article presents methods for biasing statistical translation models to reflect these properties. Evaluation with respect to independent human judgments has confirmed that translation models biased in this fashion are significantly more accurate than a baseline knowledgefree model. This article ..."
Abstract

Cited by 178 (2 self)
 Add to MetaCart
This article presents methods for biasing statistical translation models to reflect these properties. Evaluation with respect to independent human judgments has confirmed that translation models biased in this fashion are significantly more accurate than a baseline knowledgefree model. This article also shows how a statistical translation model can take advantage of preexisting knowledge that might be available about particular language pairs. Even the simplest kinds of languagespecific knowledge, such as the distinction between content words and function words, are shown to reliably boost translation model performance on some tasks. Statistical models that reflect knowledge about the model domain combine the best of both the rationalist and empiricist paradigms