Results 1  10
of
1,128
Wrappers for Feature Subset Selection
 AIJ SPECIAL ISSUE ON RELEVANCE
, 1997
"... In the feature subset selection problem, a learning algorithm is faced with the problem of selecting a relevant subset of features upon which to focus its attention, while ignoring the rest. To achieve the best possible performance with a particular learning algorithm on a particular training set, a ..."
Abstract

Cited by 1522 (3 self)
 Add to MetaCart
In the feature subset selection problem, a learning algorithm is faced with the problem of selecting a relevant subset of features upon which to focus its attention, while ignoring the rest. To achieve the best possible performance with a particular learning algorithm on a particular training set, a feature subset selection method should consider how the algorithm and the training set interact. We explore the relation between optimal feature subset selection and relevance. Our wrapper method searches for an optimal feature subset tailored to a particular algorithm and a domain. We study the strengths and weaknesses of the wrapper approach andshow a series of improved designs. We compare the wrapper approach to induction without feature subset selection and to Relief, a filter approach to feature subset selection. Significant improvement in accuracy is achieved for some datasets for the two families of induction algorithms used: decision trees and NaiveBayes.
Solving multiclass learning problems via errorcorrecting output codes
 JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 1995
"... Multiclass learning problems involve nding a de nition for an unknown function f(x) whose range is a discrete set containing k>2values (i.e., k \classes"). The de nition is acquired by studying collections of training examples of the form hx i;f(x i)i. Existing approaches to multiclass l ..."
Abstract

Cited by 730 (8 self)
 Add to MetaCart
(Show Context)
Multiclass learning problems involve nding a de nition for an unknown function f(x) whose range is a discrete set containing k>2values (i.e., k \classes&quot;). The de nition is acquired by studying collections of training examples of the form hx i;f(x i)i. Existing approaches to multiclass learning problems include direct application of multiclass algorithms such as the decisiontree algorithms C4.5 and CART, application of binary concept learning algorithms to learn individual binary functions for each of the k classes, and application of binary concept learning algorithms with distributed output representations. This paper compares these three approaches to a new technique in which errorcorrecting codes are employed as a distributed output representation. We show that these output representations improve the generalization performance of both C4.5 and backpropagation on a wide range of multiclass learning tasks. We also demonstrate that this approach is robust with respect to changes in the size of the training sample, the assignment of distributed representations to particular classes, and the application of over tting avoidance techniques such as decisiontree pruning. Finally,we show thatlike the other methodsthe errorcorrecting code technique can provide reliable class probability estimates. Taken together, these results demonstrate that errorcorrecting output codes provide a generalpurpose method for improving the performance of inductive learning programs on multiclass problems.
Support Vector Machine Classification and Validation of Cancer Tissue Samples Using Microarray Expression Data
, 2000
"... Motivation: DNA microarray experiments generating thousands of gene expression measurements, are being used to gather information from tissue and cell samples regarding gene expression differences that will be useful in diagnosing disease. We have developed a new method to analyse this kind of data ..."
Abstract

Cited by 566 (1 self)
 Add to MetaCart
Motivation: DNA microarray experiments generating thousands of gene expression measurements, are being used to gather information from tissue and cell samples regarding gene expression differences that will be useful in diagnosing disease. We have developed a new method to analyse this kind of data using support vector machines (SVMs). This analysis consists of both classification of the tissue samples, and an exploration of the data for mislabeled or questionable tissue results. Results: We demonstrate the method in detail on samples consisting of ovarian cancer tissues, normal ovarian tissues, and other normal tissues. The dataset consists of expression experiment results for 97 802 cDNAs for each tissue. As a result of computational analysis, a tissue sample is discovered and confirmed to be wrongly labeled. Upon correction of this mistake and the removal of an outlier, perfect classification of tissues is achieved, but not with high confidence. We identify and analyse a subset of genes from the ovarian dataset whose expression is highly differentiated between the types of tissues. To show robustness of the SVM method, two previously published datasets from other types of tissues or cells are analysed. The results are comparable to those previously obtained. We show that other machine learning methods also perform comparably to the SVM on many of those datasets. Availability: The SVM software is available at http:// www. cs.columbia.edu/#bgrundy/svm. Contact: booch@cse.ucsc.edu
Large Margin Classification Using the Perceptron Algorithm
 Machine Learning
, 1998
"... We introduce and analyze a new algorithm for linear classification which combines Rosenblatt 's perceptron algorithm with Helmbold and Warmuth's leaveoneout method. Like Vapnik 's maximalmargin classifier, our algorithm takes advantage of data that are linearly separable with large ..."
Abstract

Cited by 518 (2 self)
 Add to MetaCart
(Show Context)
We introduce and analyze a new algorithm for linear classification which combines Rosenblatt 's perceptron algorithm with Helmbold and Warmuth's leaveoneout method. Like Vapnik 's maximalmargin classifier, our algorithm takes advantage of data that are linearly separable with large margins. Compared to Vapnik's algorithm, however, ours is much simpler to implement, and much more efficient in terms of computation time. We also show that our algorithm can be efficiently used in very high dimensional spaces using kernel functions. We performed some experiments using our algorithm, and some variants of it, for classifying images of handwritten digits. The performance of our algorithm is close to, but not as good as, the performance of maximalmargin classifiers on the same problem, while saving significantly on computation time and programming effort. 1 Introduction One of the most influential developments in the theory of machine learning in the last few years is Vapnik's work on supp...
Online passiveaggressive algorithms
 JMLR
, 2006
"... We present a unified view for online classification, regression, and uniclass problems. This view leads to a single algorithmic framework for the three problems. We prove worst case loss bounds for various algorithms for both the realizable case and the nonrealizable case. The end result is new alg ..."
Abstract

Cited by 420 (24 self)
 Add to MetaCart
(Show Context)
We present a unified view for online classification, regression, and uniclass problems. This view leads to a single algorithmic framework for the three problems. We prove worst case loss bounds for various algorithms for both the realizable case and the nonrealizable case. The end result is new algorithms and accompanying loss bounds for hingeloss regression and uniclass. We also get refined loss bounds for previously studied classification algorithms.
A New Approach to Manipulator Control: The Cerebellar Model Articulation Controller
 (CMAC), TRANS. ASME, SERIES G. JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT AND CONTROL
, 1975
"... (CMAC) [1, 2] is a neural network that models the structure and function of the part of the brain known as the cerebellum. The cerebellum provides precise coordination of motor control for such body parts as the eyes, arms, fingers, legs, and wings. It stores and retrieves information required to co ..."
Abstract

Cited by 358 (5 self)
 Add to MetaCart
(CMAC) [1, 2] is a neural network that models the structure and function of the part of the brain known as the cerebellum. The cerebellum provides precise coordination of motor control for such body parts as the eyes, arms, fingers, legs, and wings. It stores and retrieves information required to control thousands of muscles in producing coordinated behavior as a function of time. CMAC was designed to provide this kind of motor control for robotic manipulators. CMAC is a kind of memory, or table lookup mechanism, that is capable of learning motor behavior. It exhibits properties such as generalization, learning interference, discrimination, and forgetting that are characteristic of motor learning in biological creatures. In a biological motor system, the drive signal for each
Ultraconservative Online Algorithms for Multiclass Problems
 Journal of Machine Learning Research
, 2001
"... In this paper we study online classification algorithms for multiclass problems in the mistake bound model. The hypotheses we use maintain one prototype vector per class. Given an input instance, a multiclass hypothesis computes a similarityscore between each prototype and the input instance and th ..."
Abstract

Cited by 313 (21 self)
 Add to MetaCart
(Show Context)
In this paper we study online classification algorithms for multiclass problems in the mistake bound model. The hypotheses we use maintain one prototype vector per class. Given an input instance, a multiclass hypothesis computes a similarityscore between each prototype and the input instance and then sets the predicted label to be the index of the prototype achieving the highest similarity. To design and analyze the learning algorithms in this paper we introduce the notion of ultraconservativeness. Ultraconservative algorithms are algorithms that update only the prototypes attaining similarityscores which are higher than the score of the correct label's prototype. We start by describing a family of additive ultraconservative algorithms where each algorithm in the family updates its prototypes by finding a feasible solution for a set of linear constraints that depend on the instantaneous similarityscores. We then discuss a specific online algorithm that seeks a set of prototypes which have a small norm. The resulting algorithm, which we term MIRA (for Margin Infused Relaxed Algorithm) is ultraconservative as well. We derive mistake bounds for all the algorithms and provide further analysis of MIRA using a generalized notion of the margin for multiclass problems.
Growing Cell Structures  A Selforganizing Network for Unsupervised and Supervised Learning
 Neural Networks
, 1993
"... We present a new selforganizing neural network model having two variants. The first variant performs unsupervised learning and can be used for data visualization, clustering, and vector quantization. The main advantage over existing approaches, e.g., the Kohonen feature map, is the ability of the m ..."
Abstract

Cited by 301 (11 self)
 Add to MetaCart
We present a new selforganizing neural network model having two variants. The first variant performs unsupervised learning and can be used for data visualization, clustering, and vector quantization. The main advantage over existing approaches, e.g., the Kohonen feature map, is the ability of the model to automatically find a suitable network structure and size. This is achieved through a controlled growth process which also includes occasional removal of units. The second variant of the model is a supervised learning method which results from the combination of the abovementioned selforganizing network with the radial basis function (RBF) approach. In this model it is possible  in contrast to earlier approaches  to perform the positioning of the RBF units and the supervised training of the weights in parallel. Therefore, the current classification error can be used to determine where to insert new RBF units. This leads to small networks which generalize very well. Results on the t...
Introduction to the special issue on word sense disambiguation
 Computational Linguistics J
, 1998
"... ..."
On the Generalization Ability of Online Learning Algorithms
 IEEE Transactions on Information Theory
, 2001
"... In this paper we show that online algorithms for classification and regression can be naturally used to obtain hypotheses with good datadependent tail bounds on their risk. Our results are proven without requiring complicated concentrationofmeasure arguments and they hold for arbitrary onlin ..."
Abstract

Cited by 184 (8 self)
 Add to MetaCart
(Show Context)
In this paper we show that online algorithms for classification and regression can be naturally used to obtain hypotheses with good datadependent tail bounds on their risk. Our results are proven without requiring complicated concentrationofmeasure arguments and they hold for arbitrary online learning algorithms. Furthermore, when applied to concrete online algorithms, our results yield tail bounds that in many cases are comparable or better than the best known bounds.